Patents by Inventor Andrew BAYRAMIAN

Andrew BAYRAMIAN has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11534865
    Abstract: The present disclosure relates to a system for performing an Additive Manufacturing (AM) fabrication process on a powdered material (PM) forming a substrate. The system uses a first optical subsystem to generate an optical signal comprised of electromagnetic (EM) radiation sufficient to melt or sinter a PM of the substrate. The first optical subsystem is controlled to generate a plurality of different power density levels, with a specific one being selected based on a specific PM forming a powder bed being used to form a 3D part. At least one processor controls the first optical subsystem and adjusts a power density level of the optical signal, taking into account a composition of the PM. A second optical subsystem receives the optical signal from the first optical subsystem and controls the optical signal to help facilitate melting of the PM in a layer-by-layer sequence of operations.
    Type: Grant
    Filed: December 27, 2019
    Date of Patent: December 27, 2022
    Assignee: Lawrence Livermore National Security, LLC
    Inventors: Bassem S. El-Dasher, Andrew Bayramian, James A. Demuth, Joseph C. Farmer, Sharon G. Torres
  • Publication number: 20220297191
    Abstract: The present disclosure relates to a system for manufacturing a part via an additive manufacturing process. The system uses a reservoir for containing a heated solution forming a mixture of a volatile component and meltable powdered material particles, the heated solution being heated to a point where the heated solution is at least about to begin boiling. A nozzle associated with the reservoir channels a quantity of the heated solution onto at least one of a substrate or a previously formed material layer. A processor controls a flow of the heated solution through the nozzle onto at least one of the substrate or the previously formed material layer. A heat source responsive to the processor generates heat to melt the powdered material particles. The heat source is controlled to melt the powdered material particles after the volatile component has at least substantially evaporated from the mixture.
    Type: Application
    Filed: May 15, 2022
    Publication date: September 22, 2022
    Inventors: James A. DEMUTH, Andrew BAYRAMIAN, Bassem S. EL-DASHER, Kevin J. KRAMER
  • Publication number: 20210078077
    Abstract: The present disclosure relates to a method of producing a product through additive manufacturing with heat treatment. The method involves using a fusing beam to melt powder particles disposed on a substrate. The fused powder particles are then heat treated with a heat treating beam. The heat treatment is thus completed on a given layer prior to laying down additional new layers of material. In one implementation the heat treatment is an annealing operation. The method may further involve providing a new layer of powdered material on top of the layer of fused powder particles subsequent to the heat treatment, and repeating the melting and heat treating operations in a layer-by-layer fashion until the part is completed.
    Type: Application
    Filed: November 25, 2020
    Publication date: March 18, 2021
    Inventors: James A. DEMUTH, Andrew BAYRAMIAN, Bassem S. EL-DASHER, Joseph C. FARMER, Kevin J. KRAMER, Alexander RUBENCHIK
  • Patent number: 10807273
    Abstract: A system of 3D printing using a high temperature 3D print head that functions as a “modified ink jet” printer. The print head has the ability to print high temperature material such as metal, silicon carbide, and other high temperature material as opposed to inks or plastics. The print head is fabricated from a high temperature material to maintain structural integrity while operation at temperatures above the melting temperature for the material that is being printed.
    Type: Grant
    Filed: November 23, 2015
    Date of Patent: October 20, 2020
    Assignee: Lawrence Livermore National Security, LLC
    Inventors: Kevin J. Kramer, Andrew Bayramian, James A. DeMuth, Bassem S. El-dasher
  • Patent number: 10737324
    Abstract: A method is disclosed for manufacturing a part via an additive manufacturing process. A solution is used which has a volatile component within which is suspended particles of a powdered material. The solution is heated until it at least one of begins boiling or is about to begin boiling. The heated solution is then deposited at least at one location on a substrate to help form a layer of the part. The volatile component then evaporates, leaving only the particles of powdered material. The particles are then heated to the melting point. The deposition and heating operations are repeated to successively form a plurality of layers for the part. The evaporation of the volatile component helps to cool the part.
    Type: Grant
    Filed: October 2, 2014
    Date of Patent: August 11, 2020
    Assignee: Lawrence Livermore National Security, LLC
    Inventors: James A. Demuth, Andrew Bayramian, Bassem S. El-Dasher, Kevin J. Kramer
  • Publication number: 20200139487
    Abstract: The present disclosure relates to a system for performing an Additive Manufacturing (AM) fabrication process on a powdered material (PM) forming a substrate. The system uses a first optical subsystem to generate an optical signal comprised of electromagnetic (EM) radiation sufficient to melt or sinter a PM of the substrate. The first optical subsystem is controlled to generate a plurality of different power density levels, with a specific one being selected based on a specific PM forming a powder bed being used to form a 3D part. At least one processor controls the first optical subsystem and adjusts a power density level of the optical signal, taking into account a composition of the PM. A second optical subsystem receives the optical signal from the first optical subsystem and controls the optical signal to help facilitate melting of the PM in a layer-by-layer sequence of operations.
    Type: Application
    Filed: December 27, 2019
    Publication date: May 7, 2020
    Inventors: Bassem S. EL-DASHER, Andrew BAYRAMIAN, James A. DEMUTH, Joseph C. FARMER, Sharon G. TORRES
  • Patent number: 10618111
    Abstract: An additive manufacturing system having a heat source for melting powder particles in a desired shape and pattern to produce a product. A secondary heat source is used for heat treating the product to achieve heat treatment. The secondary heat source is used to peen or anneal residual stresses caused by the additive manufacturing process.
    Type: Grant
    Filed: January 28, 2016
    Date of Patent: April 14, 2020
    Assignee: Lawrence Livermore National Security, LLC
    Inventors: James A. DeMuth, Andrew Bayramian, Bassem S. El-dasher, Joseph C. Farmer, Kevin J. Kramer, Alexander Rubenchik
  • Patent number: 10569363
    Abstract: A system is disclosed for performing an Additive Manufacturing (AM) fabrication process on a powdered material forming a substrate. The system may make use of a diode array for generating an optical signal sufficient to melt a powdered material of the substrate. A mask may be used for preventing a first predetermined portion of the optical signal from reaching the substrate, while allowing a second predetermined portion to reach the substrate. At least one processor may be used for controlling an output of the diode array.
    Type: Grant
    Filed: May 3, 2016
    Date of Patent: February 25, 2020
    Assignee: Lawrence Livermore National Security, LLC
    Inventors: Bassem S. El-Dasher, Andrew Bayramian, James A. Demuth, Joseph C. Farmer, Sharon G. Torres
  • Patent number: 10166751
    Abstract: Systems and methods are disclosed for manufacturing a three dimensional (3D) part. In one implementation a system in accordance with the present disclosure may make use of an additive manufacturing (AM) subsystem for performing an AM operation to form the 3D part. The 3D part may be formed using a plurality of distinct material layers layered one on top of another. The system may also involve at least one of a laser peening (LP) subsystem and a High Velocity Laser Accelerated Deposition (HVLAD) subsystem. The LP subsystem may be used for laser peening a selected subquantity of the layers, to impart improved hardness to the selected subquantity of the layers and/or to the overall 3D part. The HVLAD subsystem may be used to bond at least one of the material layers to a previously laid down one of the material layers.
    Type: Grant
    Filed: June 13, 2014
    Date of Patent: January 1, 2019
    Assignee: Lawrence Livermore National Security, LLC
    Inventors: Kevin J. Kramer, Andrew Bayramian, Bassem S. El-Dasher, Joseph C. Farmer, John C. Post, James A. Demuth
  • Patent number: 9855625
    Abstract: A system is disclosed for performing an Additive Manufacturing (AM) fabrication process on a powdered material forming a substrate. The system may make use of a diode array for generating an optical signal sufficient to melt a powdered material of the substrate. A mask may be used for preventing a first predetermined portion of the optical signal from reaching the substrate, while allowing a second predetermined portion to reach the substrate. At least one processor may be used for controlling an output of the diode array.
    Type: Grant
    Filed: January 5, 2016
    Date of Patent: January 2, 2018
    Assignee: Lawrence Livermore National Security, LLC
    Inventors: Bassem S. El-Dasher, Andrew Bayramian, James A. Demuth, Joseph C. Farmer, Sharon G. Torres
  • Publication number: 20170217093
    Abstract: An additive manufacturing system having a heat source for melting powder particles in a desired shape and pattern to produce a product. A secondary heat source is used for heat treating the product to achieve heat treatment. The secondary heat source is used to peen or anneal residual stresses caused by the additive manufacturing process.
    Type: Application
    Filed: January 28, 2016
    Publication date: August 3, 2017
    Inventors: James A. DeMuth, Andrew Bayramian, Bassem S. El-dasher, Joseph C. Farmer, Kevin J. Kramer, Alexander Rubenchik
  • Publication number: 20170144328
    Abstract: A system of 3D printing using a high temperature 3D print head that functions as a “modified ink jet” printer. The print head has the ability to print high temperature material such as metal, silicon carbide, and other high temperature material as opposed to inks or plastics. The print head is fabricated from a high temperature material to maintain structural integrity while operation at temperatures above the melting temperature for the material that is being printed.
    Type: Application
    Filed: November 23, 2015
    Publication date: May 25, 2017
    Inventors: Kevin J. Kramer, Andrew Bayramian, James A. DeMuth, Bassem S. El-dasher
  • Publication number: 20160243652
    Abstract: A system is disclosed for performing an Additive Manufacturing (AM) fabrication process on a powdered material forming a substrate. The system may make use of a diode array for generating an optical signal sufficient to melt a powdered material of the substrate. A mask may be used for preventing a first predetermined portion of the optical signal from reaching the substrate, while allowing a second predetermined portion to reach the substrate. At least one processor may be used for controlling an output of the diode array.
    Type: Application
    Filed: May 3, 2016
    Publication date: August 25, 2016
    Inventors: Bassem S. EL-DASHER, Andrew BAYRAMIAN, James A. DEMUTH, Joseph C. FARMER, Sharon G. TORRES
  • Publication number: 20160129503
    Abstract: A system is disclosed for performing an Additive Manufacturing (AM) fabrication process on a powdered material forming a substrate. The system may make use of a diode array for generating an optical signal sufficient to melt a powdered material of the substrate. A mask may be used for preventing a first predetermined portion of the optical signal from reaching the substrate, while allowing a second predetermined portion to reach the substrate. At least one processor may be used for controlling an output of the diode array.
    Type: Application
    Filed: January 5, 2016
    Publication date: May 12, 2016
    Inventors: Bassem S. EL-DASHER, Andrew BAYRAMIAN, James A. DEMUTH, Joseph C. FARMER, Sharon G. TORRES
  • Patent number: 9308583
    Abstract: A system is disclosed for performing an Additive Manufacturing (AM) fabrication process on a powdered material forming a substrate. The system may make use of a diode array for generating an optical signal sufficient to melt a powdered material of the substrate. A mask may be used for preventing a first predetermined portion of the optical signal from reaching the substrate, while allowing a second predetermined portion to reach the substrate. At least one processor may be used for controlling an output of the diode array.
    Type: Grant
    Filed: March 5, 2013
    Date of Patent: April 12, 2016
    Assignee: Lawrence Livermore National Security, LLC
    Inventors: Bassem S. El-Dasher, Andrew Bayramian, James A. Demuth, Joseph C. Farmer, Sharon G. Torres
  • Publication number: 20160096224
    Abstract: A method is disclosed for manufacturing a part via an additive manufacturing process. A solution is used which has a volatile component within which is suspended particles of a powdered material. The solution is heated until it at least one of begins boiling or is about to begin boiling. The heated solution is then deposited at least at one location on a substrate to help form a layer of the part. The volatile component then evaporates, leaving only the particles of powdered material. The particles are then heated to the melting point. The deposition and heating operations are repeated to successively form a plurality of layers for the part. The evaporation of the volatile component helps to cool the part.
    Type: Application
    Filed: October 2, 2014
    Publication date: April 7, 2016
    Inventors: James A. DEMUTH, Andrew BAYRAMIAN, Bassem S. EL-DASHER, Kevin J. KRAMER
  • Publication number: 20140367894
    Abstract: Systems and methods are disclosed for manufacturing a three dimensional (3D) part. In one implementation a system in accordance with the present disclosure may make use of an additive manufacturing (AM) subsystem for performing an AM operation to form the 3D part. The 3D part may be formed using a plurality of distinct material layers layered one on top of another. The system may also involve at least one of a laser peening (LP) subsystem and a High Velocity Laser Accelerated Deposition (HVLAD) subsystem. The LP subsystem may be used for laser peening a selected subquantity of the layers, to impart improved hardness to the selected subquantity of the layers and/or to the overall 3D part. The HVLAD subsystem may be used to bond at least one of the material layers to a previously laid down one of the material layers.
    Type: Application
    Filed: June 13, 2014
    Publication date: December 18, 2014
    Inventors: Kevin J. KRAMER, Andrew BAYRAMIAN, Bassem S. EL-DASHER, Joseph C. FARMER
  • Publication number: 20140252687
    Abstract: A system is disclosed for performing an Additive Manufacturing (AM) fabrication process on a powdered material forming a substrate. The system may make use of a diode array for generating an optical signal sufficient to melt a powdered material of the substrate. A mask may be used for preventing a first predetermined portion of the optical signal from reaching the substrate, while allowing a second predetermined portion to reach the substrate. At least one processor may be used for controlling an output of the diode array.
    Type: Application
    Filed: March 5, 2013
    Publication date: September 11, 2014
    Applicant: LAWRENCE LIVERMORE NATIONAL SECURITY, LLC
    Inventors: Bassem S. EL-DASHER, Andrew BAYRAMIAN, James A. DEMUTH, Joseph C. FARMER, Sharon G. TORRES