Patents by Inventor Andrew C. Duenner

Andrew C. Duenner has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 12130500
    Abstract: A multiple degree of freedom hinge system is provided, which is particularly well adapted for eyewear, such as spatial computing headsets. In the context of such spatial computing headsets having an optics assembly supported by opposing temple arms, the hinge system provides protection against over-extension of the temple arms or extreme deflections that may otherwise arise from undesirable torsional loading of the temple arms. The hinge systems also allow the temple arms to splay outwardly to enable proper fit and enhanced user comfort.
    Type: Grant
    Filed: June 22, 2023
    Date of Patent: October 29, 2024
    Assignee: Magic Leap, Inc.
    Inventors: Alejandro Lopez, Andrew C. Duenner
  • Publication number: 20230333406
    Abstract: A multiple degree of freedom hinge system is provided, which is particularly well adapted for eyewear, such as spatial computing headsets. In the context of such spatial computing headsets having an optics assembly supported by opposing temple arms, the hinge system provides protection against over-extension of the temple arms or extreme deflections that may otherwise arise from undesirable torsional loading of the temple arms. The hinge systems also allow the temple arms to splay outwardly to enable proper fit and enhanced user comfort.
    Type: Application
    Filed: June 22, 2023
    Publication date: October 19, 2023
    Applicant: MAGIC LEAP, INC.
    Inventors: Alejandro Lopez, Andrew C. Duenner
  • Patent number: 11726347
    Abstract: A multiple degree of freedom hinge system is provided, which is particularly well adapted for eyewear, such as spatial computing headsets. In the context of such spatial computing headsets having an optics assembly supported by opposing temple arms, the hinge system provides protection against over-extension of the temple arms or extreme deflections that may otherwise arise from undesirable torsional loading of the temple arms. The hinge systems also allow the temple arms to splay outwardly to enable proper fit and enhanced user comfort.
    Type: Grant
    Filed: February 17, 2021
    Date of Patent: August 15, 2023
    Assignee: Magic Leap, Inc.
    Inventors: Alejandro Lopez, Andrew C. Duenner
  • Patent number: 11630297
    Abstract: Described herein are embodiments of fiber scanning systems and methods of scanning optical fibers. The disclosed systems and methods advantageously provide an improvement to the scanning range, the oscillation amplitude, and/or the maximum pointing angle for an optical fiber in a fiber scanning system by inducing a buckling of a portion of the optical fiber.
    Type: Grant
    Filed: September 30, 2021
    Date of Patent: April 18, 2023
    Assignee: Magic Leap, Inc.
    Inventors: Timothy Mark Dalrymple, Andrew C. Duenner, Albert Daniel Carlomagno, Xiaoyang Zhang, Michael Robert Johnson, William K. Jones, Jr., Charles David Melville
  • Patent number: 11556001
    Abstract: Described are optical fibers and scanning fiber displays comprising optical fibers. The disclosed optical fibers include a plurality of mass adjustment regions, such as gas-filled regions, positioned between a central waveguiding element and an outer periphery for reducing a mass of the optical fiber as compared to an optical fiber lacking the plurality of mass adjustment regions.
    Type: Grant
    Filed: March 8, 2021
    Date of Patent: January 17, 2023
    Assignee: Magic Leap, Inc.
    Inventors: Timothy Mark Dalrymple, Clinton Carlisle, Jason Schaefer, Andrew C. Duenner, Vaibhav Mathur
  • Patent number: 11409100
    Abstract: A fiber scanning system includes an actuator configured to have an actuator natural frequency, and a fiber optic scanning element coupled to the actuator. The fiber optic scanning element is configured to have a fiber natural frequency that is within a threshold of the actuator natural frequency, such that a displacement gain of the fiber optic scanning element as a function of operating frequency exhibits a first peak value at a first resonance frequency less than the fiber natural frequency, and a second peak value at a second resonance frequency greater than the fiber natural frequency.
    Type: Grant
    Filed: July 22, 2020
    Date of Patent: August 9, 2022
    Assignee: Magic Leap, Inc.
    Inventors: Timothy Mark Dalrymple, Alejandro Lopez, William K. Jones, Jr., Andrew C. Duenner
  • Patent number: 11294124
    Abstract: An example apparatus includes an optical fiber, an actuator, and a joint mechanically coupling the actuator to the optical fiber. The joint includes a neck extending along an axis. The optical fiber is threaded through an aperture extending along the axis through the neck. The optical fiber is attached to the joint at a surface of the neck facing the axis. The joint also includes a collar extending along the axis. The actuator is mechanically attached to the joint at an inner surface of the collar facing the axis. The joint also includes a flexural element extending radially from the neck to the collar. During operation, the joint couples a force from the actuator to the optical fiber to vary an orientation of a portion of the optical fiber extending from the neck with respect to the axis.
    Type: Grant
    Filed: June 16, 2020
    Date of Patent: April 5, 2022
    Assignee: Magic Leap, Inc.
    Inventors: Xiaoyang Zhang, Vaibhav Mathur, Michael Robert Johnson, Timothy Mark Dalrymple, Andrew C. Duenner, Albert Daniel Carlomagno
  • Publication number: 20220099963
    Abstract: Described herein are embodiments of fiber scanning systems and methods of scanning optical fibers. The disclosed systems and methods advantageously provide an improvement to the scanning range, the oscillation amplitude, and/or the maximum pointing angle for an optical fiber in a fiber scanning system by inducing a buckling of a portion of the optical fiber.
    Type: Application
    Filed: September 30, 2021
    Publication date: March 31, 2022
    Applicant: Magic Leap, Inc.
    Inventors: Timothy Mark Dalrymple, Andrew C. Duenner, Albert Daniel Carlomagno, Xiaoyang Zhang, Michael Robert Johnson, William K. Jones, JR., Charles David Melville
  • Patent number: 11209338
    Abstract: Described are systems and techniques for characterizing optical fibers. Disclosed systems and techniques employ optical metrology, functional metrology, or both to characterize microstructured optical fibers and determine fiber characteristics, errors, and quality control metrics. The characteristics, errors, and quality control metrics are useful for improving the manufacturing of optical fibers.
    Type: Grant
    Filed: October 7, 2020
    Date of Patent: December 28, 2021
    Assignee: Magic Leap, Inc.
    Inventors: Timothy Mark Dalrymple, Andrew C. Duenner, Mark Schmitt
  • Patent number: 11199666
    Abstract: An example apparatus includes an optical fiber, an actuator, and a joint mechanically coupling the actuator to the optical fiber. The joint includes a neck extending along an axis. The optical fiber is threaded through an aperture extending along the axis through the neck. The optical fiber is attached to the joint at a surface of the neck facing the axis. The joint also includes a collar extending along the axis. The actuator is mechanically attached to the joint at an inner surface of the collar facing the axis. The joint also includes a flexural element extending radially from the neck to the collar. During operation, the joint couples a force from the actuator to the optical fiber to vary an orientation of a portion of the optical fiber extending from the neck with respect to the axis.
    Type: Grant
    Filed: June 16, 2020
    Date of Patent: December 14, 2021
    Assignee: Magic Leap, Inc.
    Inventors: Xiaoyang Zhang, Vaibhav Mathur, Michael Robert Johnson, Timothy Mark Dalrymple, Andrew C. Duenner, Albert Daniel Carlomagno
  • Patent number: 11156827
    Abstract: Described herein are embodiments of fiber scanning systems and methods of scanning optical fibers. The disclosed systems and methods advantageously provide an improvement to the scanning range, the oscillation amplitude, and/or the maximum pointing angle for an optical fiber in a fiber scanning system by inducing a buckling of a portion of the optical fiber.
    Type: Grant
    Filed: May 19, 2020
    Date of Patent: October 26, 2021
    Assignee: Magic Leap, Inc.
    Inventors: Timothy Mark Dalrymple, Andrew C. Duenner, Albert Daniel Carlomagno, Xiaoyang Zhang, Michael Robert Johnson, William K. Jones, Jr., Charles David Melville
  • Publication number: 20210286171
    Abstract: Described are optical fibers and scanning fiber displays comprising optical fibers. The disclosed optical fibers include a plurality of mass adjustment regions, such as gas-filled regions, positioned between a central waveguiding element and an outer periphery for reducing a mass of the optical fiber as compared to an optical fiber lacking the plurality of mass adjustment regions.
    Type: Application
    Filed: March 8, 2021
    Publication date: September 16, 2021
    Applicant: Magic Leap, Inc.
    Inventors: Timothy Mark Dalrymple, Clinton Carlisle, Jason Schaefer, Andrew C. Duenner, Vaibhav Mathur
  • Publication number: 20210255479
    Abstract: A multiple degree of freedom hinge system is provided, which is particularly well adapted for eyewear, such as spatial computing headsets. In the context of such spatial computing headsets having an optics assembly supported by opposing temple arms, the hinge system provides protection against over-extension of the temple arms or extreme deflections that may otherwise arise from undesirable torsional loading of the temple arms. The hinge systems also allow the temple arms to splay outwardly to enable proper fit and enhanced user comfort.
    Type: Application
    Filed: February 17, 2021
    Publication date: August 19, 2021
    Applicant: MAGIC LEAP, INC.
    Inventors: Alejandro Lopez, Andrew C. Duenner
  • Patent number: 10976540
    Abstract: Described are optical fibers and scanning fiber displays comprising optical fibers. The disclosed optical fibers include a plurality of mass adjustment regions, such as gas-filled regions, positioned between a central waveguiding element and an outer periphery for reducing a mass of the optical fiber as compared to an optical fiber lacking the plurality of mass adjustment regions.
    Type: Grant
    Filed: September 9, 2019
    Date of Patent: April 13, 2021
    Assignee: Magic Leap, Inc.
    Inventors: Timothy Mark Dalrymple, Clinton Carlisle, Jason Schaefer, Andrew C. Duenner, Vaibhav Mathur
  • Patent number: 10830667
    Abstract: Described are systems and techniques for characterizing optical fibers. Disclosed systems and techniques employ optical metrology, functional metrology, or both to characterize microstructured optical fibers and determine fiber characteristics, errors, and quality control metrics. The characteristics, errors, and quality control metrics are useful for improving the manufacturing of optical fibers.
    Type: Grant
    Filed: May 16, 2019
    Date of Patent: November 10, 2020
    Assignee: Magic Leap, Inc.
    Inventors: Timothy Mark Dalrymple, Andrew C. Duenner, Mark Schmitt
  • Publication number: 20200348511
    Abstract: A fiber scanning system includes an actuator configured to have an actuator natural frequency, and a fiber optic scanning element coupled to the actuator. The fiber optic scanning element is configured to have a fiber natural frequency that is within a threshold of the actuator natural frequency, such that a displacement gain of the fiber optic scanning element as a function of operating frequency exhibits a first peak value at a first resonance frequency less than the fiber natural frequency, and a second peak value at a second resonance frequency greater than the fiber natural frequency.
    Type: Application
    Filed: July 22, 2020
    Publication date: November 5, 2020
    Applicant: Magic Leap, Inc.
    Inventors: Timothy Mark Dalrymple, Alejandro Lopez, William K. Jones, JR., Andrew C. Duenner
  • Publication number: 20200310037
    Abstract: An example apparatus includes an optical fiber, an actuator, and a joint mechanically coupling the actuator to the optical fiber. The joint includes a neck extending along an axis. The optical fiber is threaded through an aperture extending along the axis through the neck. The optical fiber is attached to the joint at a surface of the neck facing the axis. The joint also includes a collar extending along the axis. The actuator is mechanically attached to the joint at an inner surface of the collar facing the axis. The joint also includes a flexural element extending radially from the neck to the collar. During operation, the joint couples a force from the actuator to the optical fiber to vary an orientation of a portion of the optical fiber extending from the neck with respect to the axis.
    Type: Application
    Filed: June 16, 2020
    Publication date: October 1, 2020
    Inventors: Xiaoyang Zhang, Vaibhav Mathur, Michael Robert Johnson, Timothy Mark Dalrymple, Andrew C. Duenner, Albert Daniel Carlomagno
  • Patent number: 10775611
    Abstract: A fiber scanning system includes an actuator configured to have an actuator natural frequency, and a fiber optic scanning element coupled to the actuator. The fiber optic scanning element is configured to have a fiber natural frequency that is within a threshold of the actuator natural frequency, such that a displacement gain of the fiber optic scanning element as a function of operating frequency exhibits a first peak value at a first resonance frequency less than the fiber natural frequency, and a second peak value at a second resonance frequency greater than the fiber natural frequency.
    Type: Grant
    Filed: November 5, 2019
    Date of Patent: September 15, 2020
    Assignee: Magic Leap, Inc.
    Inventors: Timothy Mark Dalrymple, Alejandro Lopez, William K. Jones, Jr., Andrew C. Duenner
  • Publication number: 20200278535
    Abstract: Described herein are embodiments of fiber scanning systems and methods of scanning optical fibers. The disclosed systems and methods advantageously provide an improvement to the scanning range, the oscillation amplitude, and/or the maximum pointing angle for an optical fiber in a fiber scanning system by inducing a buckling of a portion of the optical fiber.
    Type: Application
    Filed: May 19, 2020
    Publication date: September 3, 2020
    Applicant: Magic Leap, Inc.
    Inventors: Timothy Mark Dalrymple, Andrew C. Duenner, Albert Daniel Carlomagno, Xiaoyang Zhang, Michael Robert Johnson, William K. Jones, Jr., Charles David Melville
  • Patent number: 10732355
    Abstract: An example apparatus includes an optical fiber, an actuator, and a joint mechanically coupling the actuator to the optical fiber. The joint includes a neck extending along an axis. The optical fiber is threaded through an aperture extending along the axis through the neck. The optical fiber is attached to the joint at a surface of the neck facing the axis. The joint also includes a collar extending along the axis. The actuator is mechanically attached to the joint at an inner surface of the collar facing the axis. The joint also includes a flexural element extending radially from the neck to the collar. During operation, the joint couples a force from the actuator to the optical fiber to vary an orientation of a portion of the optical fiber extending from the neck with respect to the axis.
    Type: Grant
    Filed: October 8, 2019
    Date of Patent: August 4, 2020
    Assignee: Magic Leap, Inc.
    Inventors: Xiaoyang Zhang, Vaibhav Mathur, Michael Robert Johnson, Timothy Mark Dalrymple, Andrew C. Duenner, Albert Daniel Carlomagno