Patents by Inventor Andrew C. Perry

Andrew C. Perry has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8123107
    Abstract: The method forms a sputter target assembly by attaching a sputter target to an insert and applying a bond metal layer between the insert and a backing plate. Then pressing the insert and backing plate together forms a solid state bond with the bond metal layer, attaches the insert to the backing plate and forms at least one cooling channel between the insert and the backing plate.
    Type: Grant
    Filed: May 25, 2004
    Date of Patent: February 28, 2012
    Assignee: Praxair S.T. Technology, Inc.
    Inventors: Holger J. Koenigsmann, Andrew C. Perry, Thomas J. Hunt, Paul S. Gilman
  • Patent number: 8025749
    Abstract: The sputter target has a composition selected from the group consisting of high-purity copper and copper-base alloys. The sputter target's grain structure is at least about 99 percent recrystallized; and the sputter target's face has a grain orientation ratio of at least about 10 percent each of (111), (200), (220) and (311). In addition, the sputter target has a grain size of less than about 10 ?m for improving sputter uniformity and reducing sputter target arcing.
    Type: Grant
    Filed: December 23, 2004
    Date of Patent: September 27, 2011
    Assignee: Praxair S. T. Technology, Inc.
    Inventors: Andrew C. Perry, Paul S. Gilman
  • Patent number: 7740723
    Abstract: A precious metal sputter target has a composition selected from the group consisting of platinum, palladium, rhodium, iridium, ruthenium, osmium and single-phase alloys thereof. The sputter target's grain structure is at least about 99 percent recrystallized and has a grain size of less than about 200 ?m for improving sputter uniformity. The cryogenic method for producing these sputter targets is also effective for improving sputter performance for silver an gold sputter targets.
    Type: Grant
    Filed: May 17, 2007
    Date of Patent: June 22, 2010
    Assignee: Praxair S.T. Technology, Inc
    Inventors: Andrew C. Perry, Paul S. Gilman, Wendell Stuber, Binu Mathew
  • Patent number: 7608172
    Abstract: The method manufactures high-purity ferromagnetic sputter targets by cryogenic working the sputter target blank at a temperature below at least ?50° C. to impart at least about 5 percent strain into the sputter target blank to increase PTF uniformity of the target blank. The sputter target blank is a nonferrous metal selected from the group consisting of cobalt and nickel; and the nonferrous metal has a purity of at least about 99.99 weight percent. Finally, fabricating the sputter target blank forms a sputter target having an improved PTF uniformity arising from the cryogenic working.
    Type: Grant
    Filed: August 11, 2003
    Date of Patent: October 27, 2009
    Assignee: Praxair S.T. Technology, Inc.
    Inventors: Andrew C. Perry, Holger J. Koenigsmann, David E. Dombrowski, Thomas J. Hunt
  • Patent number: 7320736
    Abstract: The high-purity aluminum sputter target is at least 99.999 weight percent aluminum and has a grain structure. The grain structure is at least 99 percent recrystallized and has a grain size of less than 200 ?m. The method forms high-purity aluminum sputter targets by first cooling a high-purity target blank to a temperature of less than ?50 ° C. and then deforming the cooled high-purity target blank introduces intense strain into the high-purity target. After deforming, recrystallizing the grains at a temperature below 200 ° C. forms a target blank having at least 99 percent recrystallized grains. Finally, finishing at a low temperature sufficient to maintain the fine grain size of the high-purity target blank forms a finished sputter target.
    Type: Grant
    Filed: October 19, 2004
    Date of Patent: January 22, 2008
    Assignee: Praxair Technology, Inc.
    Inventors: Andrew C. Perry, Paul S. Gilman, Thomas J. Hunt
  • Patent number: 7235143
    Abstract: A precious metal sputter target has a composition selected from the group consisting of platinum, palladium, rhodium, iridium, ruthenium, osmium and single-phase alloys thereof. The sputter target's grain structure is at least about 99 percent recrystallized and has a grain size of less than about 200 ?m for improving sputter uniformity. The cryogenic method for producing these sputter targets is also effective for improving sputter performance for silver and gold sputter targets.
    Type: Grant
    Filed: August 8, 2002
    Date of Patent: June 26, 2007
    Assignee: Praxair S.T. Technology, Inc.
    Inventors: Andrew C. Perry, Paul S. Gilman, Wendell Stuber, Binu Mathew
  • Patent number: 6942763
    Abstract: An aluminum alloy sputter target having a sputter target face for sputtering the sputter target is disclosed. The sputter target face has a textured-metastable grain structure. The textured-metastable grain structure has a grain orientation ratio of at least 35 percent (200) orientation. The textured-metastable grain structure is stable during sputtering of the sputter target. The textured-metastable grain structure has a grain size of less than 5 ?m. The method forms aluminum alloy sputter targets by first cooling an aluminum alloy target blank to a temperature of less than ?50° C. Then deforming the cooled aluminum alloy target blank introduces plastic strain into the target blank and reduces the grain size of the grains to form a textured-metastable grain structure. Finally, finishing the aluminum alloy target blank forms a finished sputter target that maintains the textured-metastable grain structure of the finished sputter target.
    Type: Grant
    Filed: April 11, 2003
    Date of Patent: September 13, 2005
    Assignee: Praxair S.T. Technology, Inc.
    Inventors: Andrew C. Perry, Paul S. Gilman, Jaak Van den Sype
  • Patent number: 6896748
    Abstract: The sputter target has a composition selected from the group consisting of high-purity copper and copper-base alloys. The sputter target's grain structure is at least about 99 percent recrystallized; and the sputter target's face has a grain orientation ratio of at least about 10 percent each of (111), (200), (220) and (311). In addition, the sputter target has a grain size of less than about 10 ?m for improving sputter uniformity and reducing sputter target arcing.
    Type: Grant
    Filed: July 18, 2002
    Date of Patent: May 24, 2005
    Assignee: Praxair S.T. Technology, Inc.
    Inventors: Andrew C. Perry, Paul S. Gilman
  • Patent number: 6835251
    Abstract: The high-purity aluminum sputter target is at least 99.999 weight percent aluminum and has a grain structure. The grain structure is at least 99 percent recrystallized and has a grain size of less than 200 &mgr;m. The method forms high-purity aluminum sputter targets by first cooling a high-purity target blank to a temperature of less than −50° C. and then deforming the cooled high-purity target blank introduces intense strain into the high-purity target. After deforming, recrystallizing the grains at a temperature below 200° C. forms a target blank having at least 99 percent recrystallized grains. Finally, finishing at a low temperature sufficient to maintain the fine grain size of the high-purity target blank forms a finished sputter target.
    Type: Grant
    Filed: August 16, 2002
    Date of Patent: December 28, 2004
    Assignee: Praxair S.T. Technology, Inc.
    Inventors: Andrew C. Perry, Paul S. Gilman, Thomas J. Hunt
  • Patent number: 6708870
    Abstract: The method forms a sputter target assembly by attaching a sputter target to an insert and applying a bond metal layer between the insert and a backing plate. Then pressing the insert and backing plate together forms a solid state bond with the bond metal layer, attaches the insert to the backing plate and forms at least one cooling channel between the insert and the backing plate. A filler metal secures the outer perimeter of the insert to the backing plate in order to eliminate leakage from the cooling channel during sputtering of the sputter target.
    Type: Grant
    Filed: May 24, 2002
    Date of Patent: March 23, 2004
    Assignee: Praxair S.T. Technology, Inc.
    Inventors: Holger J. Koenigsmann, Andrew C. Perry, Thomas J. Hunt, Paul S. Gilman
  • Publication number: 20040031546
    Abstract: The method manufactures high-purity ferromagnetic sputter targets by cryogenic working the sputter target blank at a temperature below at least −50° C. to impart at least about 5 percent strain into the sputter target blank to increase PTF uniformity of the target blank. The sputter target blank is a nonferrous metal selected from the group consisting of cobalt and nickel; and the nonferrous metal has a purity of at least about 99.99 weight percent. Finally, fabricating the sputter target blank forms a sputter target having an improved PTF uniformity arising from the cryogenic working.
    Type: Application
    Filed: August 11, 2003
    Publication date: February 19, 2004
    Inventors: Andrew C. Perry, Holger J. Koenigsmann, David E. Dombrowski, Thomas J. Hunt
  • Publication number: 20040025986
    Abstract: A precious metal sputter target has a composition selected from the group consisting of platinum, palladium, rhodium, iridium, ruthenium, osmium and single-phase alloys thereof. The sputter target's grain structure is at least about 99 percent recrystallized and has a grain size of less than about 200 &mgr;m for improving sputter uniformity. The cryogenic method for producing these sputter targets is also effective for improving sputter performance for silver and gold sputter targets.
    Type: Application
    Filed: August 8, 2002
    Publication date: February 12, 2004
    Inventors: Andrew C. Perry, Paul S. Gilman, Wendell Stuber, Binu Mathew
  • Publication number: 20040011440
    Abstract: The sputter target has a composition selected from the group consisting of high-purity copper and copper-base alloys. The sputter target's grain structure is at least about 99 percent recrystallized; and the sputter target's face has a grain orientation ratio of at least about 10 percent each of (111), (200), (220) and (311). In addition, the sputter target has a grain size of less than about 10 &mgr;m for improving sputter uniformity and reducing sputter target arcing.
    Type: Application
    Filed: July 18, 2002
    Publication date: January 22, 2004
    Inventors: Andrew C. Perry, Paul S. Gilman
  • Publication number: 20030218054
    Abstract: The method forms a sputter target assembly by attaching a sputter target to an insert and applying a bond metal layer between the insert and a backing plate. Then pressing the insert and backing plate together forms a solid state bond with the bond metal layer, attaches the insert to the backing plate and forms at least one cooling channel between the insert and the backing plate. A filler metal secures the outer perimeter of the insert to the backing plate in order to eliminate leakage from the cooling channel during sputtering of the sputter target.
    Type: Application
    Filed: May 24, 2002
    Publication date: November 27, 2003
    Inventors: Holger J. Koenigsmann, Andrew C. Perry, Thomas J. Hunt, Paul S. Gilman
  • Patent number: 6652668
    Abstract: The method manufactures high-purity ferromagnetic sputter targets by cryogenic working the sputter target blank at a temperature below at least −50° C. to impart at least about 5 percent strain into the sputter target blank to increase PTF uniformity of the target blank. The sputter target blank is a nonferrous metal selected from the group consisting of cobalt and nickel; and the nonferrous metal has a purity of at least about 99.99 weight percent. Finally, fabricating the sputter target blank forms a sputter target having an improved PTF uniformity arising from the cryogenic working.
    Type: Grant
    Filed: May 31, 2002
    Date of Patent: November 25, 2003
    Assignee: Praxair S.T. Technology, Inc.
    Inventors: Andrew C. Perry, Holger J. Koenigsmann, David E. Dombrowski, Thomas J. Hunt
  • Publication number: 20030205463
    Abstract: An aluminum alloy sputter target having a sputter target face for sputtering the sputter target. The sputter target face has a textured-metastable grain structure. The textured-metastable grain structure has a grain orientation ratio of at least 35 percent (200) orientation. The textured-metastable grain structure is stable during sputtering of the sputter target. The textured-metastable grain structure has a grain size of less than 5 &mgr;m. The method forms aluminum alloy sputter targets by first cooling an aluminum alloy target blank to a temperature of less than −50° C. Then deforming the cooled aluminum alloy target blank introduces plastic strain into the target blank and reduces the grain size of the grains to form a textured-metastable grain structure. Finally, finishing the aluminum alloy target blank forms a finished sputter target that maintains the textured-metastable grain structure of the finished sputter target.
    Type: Application
    Filed: April 11, 2003
    Publication date: November 6, 2003
    Inventors: Andrew C. Perry, Paul S. Gilman, Jaak Van den Sype
  • Patent number: 6605199
    Abstract: An aluminum alloy sputter target having a sputter target face for sputtering the sputter target is provided. The sputter target face has a textured-metastable grain structure. The textured-metastable grain structure has a grain orientation ratio of at least 35 percent (200) orientation. The textured-metastable grain structure is stable during sputtering of the sputter target. The textured-metastable grain structure has a grain size of less than 5 &mgr;m. The method forms aluminum alloy sputter targets by first cooling an aluminum alloy target blank to a temperature of less than −50° C. Then deforming the cooled aluminum alloy target blank introduces plastic strain into the target blank and reduces the grain size of the grains to form a textured-metastable grain structure. Finally, finishing the aluminum alloy target blank forms a finished sputter target that maintains the textured-metastable grain structure of the finished sputter target.
    Type: Grant
    Filed: November 14, 2001
    Date of Patent: August 12, 2003
    Assignee: Praxair S.T. Technology, Inc.
    Inventors: Andrew C. Perry, Paul S. Gilman, Jaak Van den Sype
  • Publication number: 20030098103
    Abstract: The high-purity aluminum sputter target is at least 99.999 weight percent aluminum and has a grain structure. The grain structure is at least 99 percent recrystallized and has a grain size of less than 200 &mgr;m. The method forms high-purity aluminum sputter targets by first cooling a high-purity target blank to a temperature of less than −50° C. and then deforming the cooled high-purity target blank introduces intense strain into the high-purity target. After deforming, recrystallizing the grains at a temperature below 200° C. forms a target blank having at least 99 percent recrystallized grains. Finally, finishing at a low temperature sufficient to maintain the fine grain size of the high-purity target blank forms a finished sputter target.
    Type: Application
    Filed: August 16, 2002
    Publication date: May 29, 2003
    Inventors: Andrew C. Perry, Paul S. Gilman, Thomas J. Hunt
  • Publication number: 20030098102
    Abstract: The high-purity aluminum sputter target is at least 99.999 weight percent aluminum and has a grain structure. The grain structure is at least 99 percent recrystallized and has a grain size of less than 125 &mgr;m. The method forms high-purity aluminum sputter targets by first cooling a high-purity target blank to a temperature of less than −50° C. and then deforming the cooled high-purity target blank introduces intense strain into the high-purity target. After deforming, recrystallizing the grains at a temperature below 200° C. forms a target blank having at least 99 percent recrystallized grains. Finally, finishing at a low temperature sufficient to maintain the fine grain size of the high-purity target blank forms a finished sputter target.
    Type: Application
    Filed: November 13, 2001
    Publication date: May 29, 2003
    Inventors: Andrew C. Perry, Paul S. Gilman, Thomas J. Hunt
  • Publication number: 20030089430
    Abstract: An aluminum alloy sputter target having a sputter target face for sputtering the sputter target. The sputter target face has a textured-metastable grain structure. The textured-metastable grain structure has a grain orientation ratio of at least 35 percent (200) orientation. The textured-metastable grain structure is stable during sputtering of the sputter target. The textured-metastable grain structure has a grain size of less than 5 &mgr;m. The method forms aluminum alloy sputter targets by first cooling an aluminum alloy target blank to a temperature of less than −50 ° C. Then deforming the cooled aluminum alloy target blank introduces plastic strain into the target blank and reduces the grain size of the grains to form a textured-metastable grain structure. Finally, finishing the aluminum alloy target blank forms a finished sputter target that maintains the textured-metastable grain structure of the finished sputter target.
    Type: Application
    Filed: November 14, 2001
    Publication date: May 15, 2003
    Inventors: Andrew C. Perry, Paul S. Gilman, Jaak Van den Sype