Patents by Inventor Andrew C. R. Pipino

Andrew C. R. Pipino has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20110080579
    Abstract: A chemical sensor that includes, in one example embodiment, a dielectric resonator, wherein a material sample to be characterized is positioned a species to be detected, wherein the species is positioned near a surface of the resonator so that evanescent electromagnetic energy emanating from the surface causes Raman scattering from the species. The resonator is adapted to support modes propagating within the resonator, wherein the modes are adapted to yield the evanescent electromagnetic energy and to couple Raman-scattered electromagnetic energy back into one or more of the modes. In a more specific embodiment, the dielectric cavity represents a stable optical resonator. An input coupling optic couples input electromagnetic energy into the dielectric cavity via photon tunneling across a gap between the input coupling optic and the dielectric cavity. A distance across the gap is approximately one wavelength or larger, wherein the wavelength corresponds to a wavelength of the input electromagnetic energy.
    Type: Application
    Filed: October 5, 2009
    Publication date: April 7, 2011
    Inventor: Andrew C.R. Pipino
  • Patent number: 6515749
    Abstract: A chemical sensor is provided which includes an optical resonator including a nanostructured surface comprising a plurality of nanoparticles bound to one or more surfaces of the resonator. The nanoparticles provide optical absorption and the sensor further comprises a detector for detecting the optical absorption of the nanoparticles or their environment. In particular, a selective chemical interaction is provided which modifies the optical absorption of the nanoparticles or their environment, and an analyte is detected based on the modified optical absorption. A light pulse is generated which enters the resonator to interrogate the modified optical absorption and the exiting light pulse is detected by the detector.
    Type: Grant
    Filed: August 9, 2001
    Date of Patent: February 4, 2003
    Assignee: The United States of America as represented by the Secretary of Commerce
    Inventor: Andrew C. R. Pipino
  • Publication number: 20020122179
    Abstract: A chemical sensor is provided which includes an optical resonator including a nanostructured surface comprising a plurality of nanoparticles bound to one or more surfaces of the resonator. The nanoparticles provide optical absorption and the sensor further comprises a detector for detecting the optical absorption of the nanoparticles or their environment. In particular, a selective chemical interaction is provided which modifies the optical absorption of the nanoparticles or their environment, and an analyte is detected based on the modified optical absorption. A light pulse is generated which enters the resonator to interrogate the modified optical absorption and the exiting light pulse is detected by the detector.
    Type: Application
    Filed: August 9, 2001
    Publication date: September 5, 2002
    Inventor: Andrew C.R. Pipino
  • Patent number: 5943136
    Abstract: An optical cavity resonator device is provided for conducting sensitive murement of optical absorption by matter in any state with diffraction-limited spatial resolution through utilization of total internal reflection within a high-Q (high quality, low loss) optical cavity. Intracavity total reflection generates an evanescent wave that decays exponentially in space at a point external to the cavity, thereby providing a localized region where absorbing materials can be sensitively probed through alteration of the Q-factor of the otherwise isolated cavity. When a laser pulse is injected into the cavity and passes through the evanescent state, an amplitude loss resulting from absorption is incurred that reduces the lifetime of the pulse in the cavity. By monitoring the decay of the injected pulse, the absorption coefficient of manner within the evanescent wave region is accurately obtained from the decay time measurement.
    Type: Grant
    Filed: October 31, 1997
    Date of Patent: August 24, 1999
    Assignee: The United States of America as represented by the Secretary of Commerce
    Inventors: Andrew C. R. Pipino, Jeffrey W. Hudgens
  • Patent number: 5835231
    Abstract: A broadband, ultrahigh-sensitivity chemical sensor is provided that allows etection through utilization of a small, extremely low-loss, monolithic optical cavity. The cavity is fabricated from highly transparent optical material in the shape of a regular polygon with one or more convex facets to form a stable resonator for ray trajectories sustained by total internal reflection. Optical radiation enters and exits the monolithic cavity by photon tunneling in which two totally reflecting surfaces are brought into close proximity. In the presence of absorbing material, the loss per pass is increased since the evanescent waves that exist exterior to the cavity at points where the circulating pulse is totally reflected, are absorbed. The decay rate of an injected pulse is determined by coupling out an infinitesimal fraction of the pulse to produce an intensity-versus-time decay curve.
    Type: Grant
    Filed: October 31, 1997
    Date of Patent: November 10, 1998
    Assignee: The United States of America as represented by the Secretary of Commerce
    Inventor: Andrew C. R. Pipino