Patents by Inventor Andrew Cervin-Lawry

Andrew Cervin-Lawry has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9305709
    Abstract: In accordance with the teachings described herein, a multi-level thin film capacitor on a ceramic substrate and method of manufacturing the same are provided. The multi-level thin film capacitor (MLC) may include at least one high permittivity dielectric layer between at least two electrode layers, the electrode layers being formed from a conductive thin film material. A buffer layer may be included between the ceramic substrate and the thin film MLC. The buffer layer may have a smooth surface with a surface roughness (Ra) less than or equal to 0.08 micrometers (um).
    Type: Grant
    Filed: October 6, 2014
    Date of Patent: April 5, 2016
    Assignee: BlackBerry Limited
    Inventors: Ivoyl Koutsaroff, Mark Vandermeulen, Andrew Cervin-Lawry, Atin J. Patel
  • Publication number: 20150093497
    Abstract: In accordance with the teachings described herein, a multi-level thin film capacitor on a ceramic substrate and method of manufacturing the same are provided. The multi-level thin film capacitor (MLC) may include at least one high permittivity dielectric layer between at least two electrode layers, the electrode layers being formed from a conductive thin film material. A buffer layer may be included between the ceramic substrate and the thin film MLC. The buffer layer may have a smooth surface with a surface roughness (Ra) less than or equal to 0.08 micrometers (um).
    Type: Application
    Filed: October 6, 2014
    Publication date: April 2, 2015
    Inventors: Ivoyl Koutsaroff, Mark Vandermeulen, Andrew Cervin-Lawry, Atin J. Patel
  • Patent number: 8693162
    Abstract: A multi-layered capacitor includes three or more capacitor layers. A first layer includes a first DC-biased, tunable capacitor. A second layer, acoustically coupled to the first layer, includes a second DC-biased, tunable capacitor. A third layer, acoustically coupled to the second layer, includes a third DC-biased, tunable capacitor. Each dielectric of the first, second, and third capacitors has a resonance of about the same frequency, within 5%, and inner electrodes of the first, second, and third capacitors have a resonance of about the same frequency, within 5%. The resonance of each layer is a function of at least thickness, density, and material. The first, second, and third layers are biased to generate destructive acoustic interference, and the multi-layer capacitor is operable at frequencies greater than 0.1 GHz.
    Type: Grant
    Filed: May 9, 2012
    Date of Patent: April 8, 2014
    Assignee: BlackBerry Limited
    Inventors: Mircea Capanu, Andrew Cervin-Lawry, Marina Zelner
  • Patent number: 8569142
    Abstract: In accordance with the teachings described herein, a multi-level thin film capacitor on a ceramic substrate and method of manufacturing the same are provided. The multi-level thin film capacitor (MLC) may include at least one high permittivity dielectric layer between at least two electrode layers, the electrode layers being formed from a conductive thin film material. A buffer layer may be included between the ceramic substrate and the thin film MLC. The buffer layer may have a smooth surface with a surface roughness (Ra) less than or equal to 0.08 micrometers (um).
    Type: Grant
    Filed: April 17, 2007
    Date of Patent: October 29, 2013
    Assignee: BlackBerry Limited
    Inventors: Ivoyl P. Koutsaroff, Mark Vandermeulen, Andrew Cervin-Lawry, Atin J. Patel
  • Publication number: 20120218733
    Abstract: A multi-layered capacitor includes three or more capacitor layers. A first layer includes a first DC-biased, tunable capacitor. A second layer, acoustically coupled to the first layer, includes a second DC-biased, tunable capacitor. A third layer, acoustically coupled to the second layer, includes a third DC-biased, tunable capacitor. Each dielectric of the first, second, and third capacitors has a resonance of about the same frequency, within 5%, and inner electrodes of the first, second, and third capacitors have a resonance of about the same frequency, within 5%. The resonance of each layer is a function of at least thickness, density, and material. The first, second, and third layers are biased to generate destructive acoustic interference, and the multi-layer capacitor is operable at frequencies greater than 0.1 GHz.
    Type: Application
    Filed: May 9, 2012
    Publication date: August 30, 2012
    Applicant: PARATEK MICROWAVE, INC.
    Inventors: Mircea Capanu, Andrew Cervin-Lawry, Marina Zelner
  • Patent number: 8194387
    Abstract: A multi-layered capacitor includes three or more capacitor layers. A first layer includes a first DC-biased, tunable capacitor. A second layer, acoustically coupled to the first layer, includes a second DC-biased, tunable capacitor. A third layer, acoustically coupled to the second layer, includes a third DC-biased, tunable capacitor. Each dielectric of the first, second, and third capacitors has a resonance of about the same frequency, within 5%, and inner electrodes of the first, second, and third capacitors have a resonance of about the same frequency, within 5%. The resonance of each layer is a function of at least thickness, density, and material. The first, second, and third layers are biased to generate destructive acoustic interference, and the multi-layer capacitor is operable at frequencies greater than 0.1 GHz.
    Type: Grant
    Filed: March 20, 2009
    Date of Patent: June 5, 2012
    Assignee: Paratek Microwave, Inc.
    Inventors: Mircea Capanu, Andrew Cervin-Lawry, Marina Zelner
  • Patent number: 7981759
    Abstract: In accordance with the teachings described herein, a method for fabricating a patterned polysilicon layer having a planar surface may include the steps of: depositing a polysilicon film above a substrate material; depositing an oxide-resistant mask over the polysilicon film; patterning and etching the oxide-resistant mask to form a patterned mask layer over the polysilicon film, such that the polysilicon film includes masked and unmasked portions; etching the unmasked portions of the polysilicon film for a first amount of time; oxidizing the etched polysilicon film for a second amount of time to form an oxide layer that defines the patterned polysilicon layer; and removing the patterned mask layer; wherein the first and second amounts of time are selected such that the oxide layer and the patterned polysilicon layer have about the same thickness and form a planar surface.
    Type: Grant
    Filed: July 11, 2007
    Date of Patent: July 19, 2011
    Assignee: Paratek Microwave, Inc.
    Inventors: Andrew Cervin-Lawry, Mircea Capanu
  • Patent number: 7875956
    Abstract: In accordance with the teachings described herein, a multi-level thin film capacitor on a ceramic substrate and method of manufacturing the same are provided. The multi-level thin film capacitor (MLC) may include at least one high permittivity dielectric layer between at least two electrode layers, the electrode layers being formed from a conductive thin film material. A buffer layer may be included between the ceramic substrate and the thin film MLC. The buffer layer may have a smooth surface with a surface roughness (Ra) less than or equal to 0.08 micrometers (um).
    Type: Grant
    Filed: April 17, 2007
    Date of Patent: January 25, 2011
    Assignee: Paratek Microwave, Inc.
    Inventors: Ivoyl P. Koutsaroff, Mark Vandermeulen, Andrew Cervin-Lawry, Atin J. Patel
  • Publication number: 20100238602
    Abstract: A multi-layered capacitor includes three or more capacitor layers. A first layer includes a first DC-biased, tunable capacitor. A second layer, acoustically coupled to the first layer, includes a second DC-biased, tunable capacitor. A third layer, acoustically coupled to the second layer, includes a third DC-biased, tunable capacitor. Each dielectric of the first, second, and third capacitors has a resonance of about the same frequency, within 5%, and inner electrodes of the first, second, and third capacitors have a resonance of about the same frequency, within 5%. The resonance of each layer is a function of at least thickness, density, and material. The first, second, and third layers are biased to generate destructive acoustic interference, and the multi-layer capacitor is operable at frequencies greater than 0.1 GHz.
    Type: Application
    Filed: March 20, 2009
    Publication date: September 23, 2010
    Inventors: Mircea Capanu, Andrew Cervin-Lawry, Marina Zelner
  • Publication number: 20100176487
    Abstract: An electronic component is provided on a substrate. A thin-film capacitor is attached to the substrate, the thin-film capacitor includes a pyrochlore or perovskite dielectric layer between a plurality of electrode layers, the electrode layers being formed from a conductive thin-film material. A reactive barrier layer is deposited over the thin-film capacitor. The reactive barrier layer includes an oxide having an element with more than one valence state, wherein the element with more than one valence state has a molar ratio of the molar amount of the element that is in its highest valence state to its total molar amount in the barrier of 50% to 100%. Optionally layers of other materials may intervene between the capacitor and reactive barrier layer. The reactive barrier layer may be paraelectric and the electronic component may be a tunable capacitor.
    Type: Application
    Filed: March 25, 2010
    Publication date: July 15, 2010
    Applicant: PARATEK MICROWAVE, INC.
    Inventors: Marina Zelner, Miroea Capanu, Paul Bun Cheuk Woo, Susan C. Nagy, Andrew Cervin-Lawry
  • Publication number: 20090017591
    Abstract: In accordance with the teachings described herein, a method for fabricating a patterned polysilicon layer having a planar surface may include the steps of: depositing a polysilicon film above a substrate material; depositing an oxide-resistant mask over the polysilicon film; patterning and etching the oxide-resistant mask to form a patterned mask layer over the polysilicon film, such that the polysilicon film includes masked and unmasked portions; etching the unmasked portions of the polysilicon film for a first amount of time; oxidizing the etched polysilicon film for a second amount of time to form an oxide layer that defines the patterned polysilicon layer; and removing the patterned mask layer; wherein the first and second amounts of time are selected such that the oxide layer and the patterned polysilicon layer have about the same thickness and form a planar surface.
    Type: Application
    Filed: July 11, 2007
    Publication date: January 15, 2009
    Inventors: Andrew Cervin-Lawry, Mircea Capanu
  • Publication number: 20080037200
    Abstract: In accordance with the teachings described herein, a multi-level thin film capacitor on a ceramic substrate and method of manufacturing the same are provided. The multi-level thin film capacitor (MLC) may include at least one high permittivity dielectric layer between at least two electrode layers, the electrode layers being formed from a conductive thin film material. A buffer layer may be included between the ceramic substrate and the thin film MLC. The buffer layer may have a smooth surface with a surface roughness (Ra) less than or equal to 0.08 micrometers (um).
    Type: Application
    Filed: April 13, 2007
    Publication date: February 14, 2008
    Inventors: Ivoyl Koutsaroff, Mark Vandermeulen, Andrew Cervin-Lawry, Atin Patel
  • Publication number: 20080001292
    Abstract: A thin-film capacitor structure fabricated on a substrate is provided. The thin-film capacitor includes a pyrochlore or perovskite alkali earth dielectric layer between a plurality of electrode layers. A pyrochlore or perovskite hydrogen-gettering barrier layer is deposited over the thin-film capacitor. A hermetic seal layer is deposited over the barrier layer by plasma enhanced chemical vapor deposition (PECVD), low pressure chemical vapor deposition (LPCVD), or some other hydrogen-producing method. The hydrogen-gettering barrier layer prevents hydrogen from reacting with and degrading the properties of the dielectric material, thereby enhancing the durability and other features of the capacitor.
    Type: Application
    Filed: June 25, 2007
    Publication date: January 3, 2008
    Inventors: Marina Zelner, Paul Bun Cheuk Woo, Andrew Cervin-Lawry, Susan C. Nagy, Miroea Capanu
  • Publication number: 20070209201
    Abstract: In accordance with the teachings described herein, a multi-level thin film capacitor on a ceramic substrate and method of manufacturing the same are provided. The multi-level thin film capacitor (MLC) may include at least one high permittivity dielectric layer between at least two electrode layers, the electrode layers being formed from a conductive thin film material. A buffer layer may be included between the ceramic substrate and the thin film MLC. The buffer layer may have a smooth surface with a surface roughness (Ra) less than or equal to 0.08 micrometers (um).
    Type: Application
    Filed: April 17, 2007
    Publication date: September 13, 2007
    Inventors: Ivoyl Koutsaroff, Mark Vandermeulen, Andrew Cervin-Lawry, Atin Patel
  • Patent number: 7224040
    Abstract: In accordance with the teachings described herein, a multi-level thin film capacitor on a ceramic substrate and method of manufacturing the same are provided. The multi-level thin film capacitor (MLC) may include at least one high permittivity dielectric layer between at least two electrode layers, the electrode layers being formed from a conductive thin film material. A buffer layer may be included between the ceramic substrate and the thin film MLC. The buffer layer may have a smooth surface with a surface roughness (Ra) less than or equal to 0.08 micrometers (um).
    Type: Grant
    Filed: November 24, 2004
    Date of Patent: May 29, 2007
    Assignee: Gennum Corporation
    Inventors: Ivoyl P. Koutsaroff, Mark Vandermeulen, Andrew Cervin-Lawry, Atin J. Patel
  • Publication number: 20070063777
    Abstract: A radio frequency (RF) device includes first and second electrodes and a polar dielectric made from a material having electrostrictive properties between the first and second electrodes. The polar dielectric and the first and second electrodes collectively form an active device having an operational frequency band. The RF device also includes one or more layers that affect the acoustic properties of the RF device such that the RF device absorbs RF energy at a frequency that is within the operational frequency band, whereby the RF device is an active device because the RF energy is absorbed at a frequency within the operational frequency band.
    Type: Application
    Filed: August 23, 2006
    Publication date: March 22, 2007
    Inventors: Mircea Capanu, Andrew Cervin-Lawry, Thomas Bernacki
  • Publication number: 20060274476
    Abstract: In accordance with the teachings described herein, low loss thin film capacitors and methods of manufacturing the same are provided. A low loss thin-film capacitor structure may include first and second electrodes and a polar dielectric between the first and second electrodes. The polar dielectric and the first and second electrodes collectively form a capacitor having an operational frequency band. The capacitor structure may also include one or more layers that affect the acoustic properties of the thin-film capacitor structure such that the capacitor absorbs RF energy at a frequency that is outside of the operational frequency band. A method of manufacturing a low loss thin-film capacitor may include the steps of fabricating a capacitor structure that includes a polar dielectric material, and modifying the acoustic properties of the capacitor structure such that the polar capacitor absorbs RF energy at a frequency that is outside of the operating frequency band of the capacitor structure.
    Type: Application
    Filed: April 3, 2006
    Publication date: December 7, 2006
    Inventors: Andrew Cervin-Lawry, Mircea Capanu, Ivoyl Koutsaroff, Marina Zelner, Thomas Bernacki
  • Publication number: 20050117272
    Abstract: In accordance with the teachings described herein, a multi-level thin film capacitor on a ceramic substrate and method of manufacturing the same are provided. The multi-level thin film capacitor (MLC) may include at least one high permittivity dielectric layer between at least two electrode layers, the electrode layers being formed from a conductive thin film material. A buffer layer may be included between the ceramic substrate and the thin film MLC. The buffer layer may have a smooth surface with a surface roughness (Ra) less than or equal to 0.08 micrometers (um).
    Type: Application
    Filed: November 24, 2004
    Publication date: June 2, 2005
    Inventors: Ivoyl Koutsaroff, Mark Vandermeulen, Andrew Cervin-Lawry, Atin Patel
  • Patent number: 6731541
    Abstract: An EEPROM memory cell comprising a transistor on a first conductivity type semiconductor substrate and a capacitor formed on a second conductivity type semiconductor substrate. The capacitor comprises first and second injector regions of third conductivity type, a channel region of second conductivity type separating the first and second injector regions and a first electrically floating structure disposed above the channel region, wherein a first edge portion of the floating structure overlaps a portion of the first injector region and a second edge portion of the first floating structure overlaps a portion of the second injector region, and a control gate region of fourth conductivity type located within the second conductivity type semiconductor substrate region. The gate structure and first floating structure are electrically connected together. In different aspects of the present invention, the EEPROM memory cell may also include a second capacitor.
    Type: Grant
    Filed: May 14, 2003
    Date of Patent: May 4, 2004
    Assignee: Gennum Corporation
    Inventors: David Kinsey, Luigi DiPede, James Kendall, Andrew Cervin-Lawry
  • Publication number: 20030198087
    Abstract: An EEPROM memory cell comprising a transistor on a first conductivity type semiconductor substrate and a capacitor formed on a second conductivity type semiconductor substrate. The capacitor comprises first and second injector regions of third conductivity type, a channel region of second conductivity type separating the first and second injector regions and a first electrically floating structure disposed above the channel region, wherein a first edge portion of the floating structure overlaps a portion of the first injector region and a second edge portion of the first floating structure overlaps a portion of the second injector region, and a control gate region of fourth conductivity type located within the second conductivity type semiconductor substrate region. The gate structure and first floating structure are electrically connected together. In different aspects of the present invention, the EEPROM memory cell may also include a second capacitor.
    Type: Application
    Filed: May 14, 2003
    Publication date: October 23, 2003
    Applicant: Gennum Corporation
    Inventors: David Kinsey, Luigi Di Pede, James Kendall, Andrew Cervin-Lawry