Patents by Inventor Andrew D. Gamalski

Andrew D. Gamalski has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11929556
    Abstract: An apparatus includes multiple patch antenna elements configured to transmit multiple electromagnetic beams in multiple beam directions. The apparatus also includes multiple inputs each configured to receive one of multiple input signals, where each input signal is associated with one of the electromagnetic beams. The apparatus further includes multiple phase-tapered splitters each configured to receive one of the input signals, divide the received input signal into a set of sub-signals, and provide a phase taper that adjusts phases of at least some of the sub-signals in the set of sub-signals. Different phase tapers are associated with different ones of the beam directions. In addition, the apparatus includes multiple 90° hybrid transformers each configured to receive sub-signals associated with different ones of the input signals, isolate the received sub-signals from each other, and provide the isolated sub-signals to one of the patch antenna elements.
    Type: Grant
    Filed: September 8, 2020
    Date of Patent: March 12, 2024
    Assignee: Raytheon Company
    Inventors: Andrew D. Gamalski, Andrew K. Brown
  • Patent number: 11917746
    Abstract: A method of forming a heat spreader on a printed circuit board (PCB), having a power dissipating component operably coupled thereto, includes attaching a thermally and electrically conductive structure, to a first side of the PCB to define a first PCB region that includes the component and a second PCB region without. The underside of the component is underfilled to electrically insulate its solder contacts. A first protective layer is applied to the second region of the PCB. A conductive plating membrane is deposited to the first region, the second region, and to the structure. A second protective layer is applied over a portion of the conductive plating membrane that overlays the second region, leaving exposed the rest of the conductive plating membrane. An electrically and thermally conductive layer is electroplated over the exposed areas of the conductive plating membrane, to form a heat exchanger within the first region.
    Type: Grant
    Filed: April 22, 2022
    Date of Patent: February 27, 2024
    Assignee: Raytheon Company
    Inventors: Miroslav Micovic, Brandon W. Pillans, Andrew D. Gamalski, Andrew K. Brown
  • Publication number: 20230345616
    Abstract: A method of forming a heat spreader on a printed circuit board (PCB), having a power dissipating component operably coupled thereto, includes attaching a thermally and electrically conductive structure, to a first side of the PCB to define a first PCB region that includes the component and a second PCB region without. The underside of the component is underfilled to electrically insulate its solder contacts. A first protective layer is applied to the second region of the PCB. A conductive plating membrane is deposited to the first region, the second region, and to the structure. A second protective layer is applied over a portion of the conductive plating membrane that overlays the second region, leaving exposed the rest of the conductive plating membrane. An electrically and thermally conductive layer is electroplated over the exposed areas of the conductive plating membrane, to form a heat exchanger within the first region.
    Type: Application
    Filed: April 22, 2022
    Publication date: October 26, 2023
    Applicant: Raytheon Company
    Inventors: Miroslav Micovic, Brandon W. Pillans, Andrew D. Gamalski, Andrew K. Brown
  • Patent number: 11522508
    Abstract: A dual-band MMIC power amplifier and method of operation to amplify frequencies in different RF bands while only requiring input drive signals at frequencies f1 and f2 in a narrow RF input band. This allows for the use of a conventional narrowband RF IC to drive the MMIC and does not require additional circuitry (e.g., a LO) on the MMIC power amplifier. The matching network of the last amplification stage is modified to pass f1 (or a harmonic thereof), reflect f2, pass a Pth harmonic of f2 where P is 2 or 3 and to reflect any unused 1st, 2nd or 3rd order harmonics of f1 or f2 back into the MMIC. In response to an input signal at f1, the MMIC power amplifier amplifies and outputs a signal at f1 (or a harmonic thereof). In response to an input signal at f2 at sufficient RF power, the last amplification stage operates in compression such that the MMIC power amplifier generates the harmonics, selects the Pth harmonic and outputs an amplified RF signal at P*f2.
    Type: Grant
    Filed: August 13, 2021
    Date of Patent: December 6, 2022
    Assignee: Raytheon Company
    Inventors: Andrew D. Gamalski, Miroslav Micovic, Katherine J. Herrick
  • Publication number: 20220077594
    Abstract: An apparatus includes multiple patch antenna elements configured to transmit multiple electromagnetic beams in multiple beam directions. The apparatus also includes multiple inputs each configured to receive one of multiple input signals, where each input signal is associated with one of the electromagnetic beams. The apparatus further includes multiple phase-tapered splitters each configured to receive one of the input signals, divide the received input signal into a set of sub-signals, and provide a phase taper that adjusts phases of at least some of the sub-signals in the set of sub-signals. Different phase tapers are associated with different ones of the beam directions. In addition, the apparatus includes multiple 90° hybrid transformers each configured to receive sub-signals associated with different ones of the input signals, isolate the received sub-signals from each other, and provide the isolated sub-signals to one of the patch antenna elements.
    Type: Application
    Filed: September 8, 2020
    Publication date: March 10, 2022
    Inventors: Andrew D. Gamalski, Andrew K. Brown