Patents by Inventor Andrew D. Jackson

Andrew D. Jackson has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240041425
    Abstract: Provided is a non-invasive system and method of determining pennation angle and/or fascicle length based on image processing. An ultrasound scan image is processed to facilitate distinguishing of muscle fiber and tendon. The processed ultrasound scan image is then analyzed. The pennation angle and/or fascicle length is determined based on the analysis. An example method includes receiving an ultrasound scan image of at least a portion of a skin layer as disposed above one or more additional tissue layers, the image provided by a plurality of pixels. The method continues by introducing noise into the pixels of the image and thresholding the pixels of the image to provide a binary image having a plurality of structural elements of different sizes. The method continues with morphing the structural elements of the binary image to remove small structural elements and connect large structural elements.
    Type: Application
    Filed: October 6, 2023
    Publication date: February 8, 2024
    Inventors: Pierre Sarnow, Stephen S. Kurtz, Andrew D. Jackson, Wayne Phillips
  • Patent number: 11813111
    Abstract: Provided is a non-invasive system and method of determining pennation angle and/or fascicle length based on image processing. An ultrasound scan image is processed to facilitate distinguishing of muscle fiber and tendon. The processed ultrasound scan image is then analyzed. The pennation angle and/or fascicle length is determined based on the analysis. An example method includes receiving an ultrasound scan image of at least a portion of a skin layer as disposed above one or more additional tissue layers, the image provided by a plurality of pixels. The method continues by introducing noise into the pixels of the image and thresholding the pixels of the image to provide a binary image having a plurality of structural elements of different sizes. The method continues with morphing the structural elements of the binary image to remove small structural elements and connect large structural elements.
    Type: Grant
    Filed: March 7, 2023
    Date of Patent: November 14, 2023
    Assignee: MUSCLESOUND, INC.
    Inventors: Pierre Sarnow, Stephen S. Kurtz, Andrew D. Jackson, Wayne Phillips
  • Publication number: 20230240644
    Abstract: Provided is a non-invasive system and method of determining pennation angle and/or fascicle length based on image processing. An ultrasound scan image is processed to facilitate distinguishing of muscle fiber and tendon. The processed ultrasound scan image is then analyzed. The pennation angle and/or fascicle length is determined based on the analysis. An example method includes receiving an ultrasound scan image of at least a portion of a skin layer as disposed above one or more additional tissue layers, the image provided by a plurality of pixels. The method continues by introducing noise into the pixels of the image and thresholding the pixels of the image to provide a binary image having a plurality of structural elements of different sizes. The method continues with morphing the structural elements of the binary image to remove small structural elements and connect large structural elements.
    Type: Application
    Filed: March 7, 2023
    Publication date: August 3, 2023
    Inventors: Pierre Sarnow, Stephen S. Kurtz, Andrew D. Jackson, Wayne Phillips
  • Publication number: 20230165517
    Abstract: Provided is a non-invasive system and method for determining a fuel value for a target muscle and potentially at least one indicator muscle. The method includes receiving an ultrasound scan of a target muscle; evaluating at least a portion of the ultrasound scan to determine fuel value within the target muscle; recording the determined fuel value for the muscle as an element of a data set for the muscle; evaluating the fuel data set to determine a value range; and in response to the range being at least above a pre-determined threshold, establishing a target score for the muscle as based on an upper portion of the value range. The method may be repeated to identify ranges for a plurality of muscles, the muscle with the greatest range being identified as an indicator muscle. Based thereon, the muscles estimated fuel level, fuel rating and energy status may be determined.
    Type: Application
    Filed: January 31, 2023
    Publication date: June 1, 2023
    Inventors: Pierre Sarnow, Stephen S. Kurtz, Andrew D. Jackson, Wayne Phillips
  • Patent number: 11627934
    Abstract: Provided is a non-invasive system and method of determining pennation angle and/or fascicle length based on image processing. An ultrasound scan image is processed to facilitate distinguishing of muscle fiber and tendon. The processed ultrasound scan image is then analyzed. The pennation angle and/or fascicle length is determined based on the analysis. An example method includes receiving an ultrasound scan image of at least a portion of a skin layer as disposed above one or more additional tissue layers, the image provided by a plurality of pixels. The method continues by introducing noise into the pixels of the image and thresholding the pixels of the image to provide a binary image having a plurality of structural elements of different sizes. The method continues with morphing the structural elements of the binary image to remove small structural elements and connect large structural elements.
    Type: Grant
    Filed: July 13, 2021
    Date of Patent: April 18, 2023
    Assignee: MUSCLESOUND, LLC
    Inventors: Pierre Sarnow, Stephen S. Kurtz, Andrew D. Jackson, Wayne Phillips
  • Patent number: 11612376
    Abstract: Provided is a non-invasive system and method of determining muscle tissue size based on image processing. The method includes receiving at least one ultrasound scan image of at least a portion of a skin layer as disposed above one or more additional tissue layers, the image provided by a plurality of pixels. The method continues by introducing noise into the pixels of the image and thresholding the pixels of the image to provide a binary image having a plurality of structural elements of different sizes. The method continues with morphing the structural elements of the binary image to remove small structural elements and connect large structural elements. With this resulting image, the method distinguishes muscle tissue from remaining elements and determines the muscle tissue size. Associated apparatuses and computer program products are also disclosed.
    Type: Grant
    Filed: April 19, 2021
    Date of Patent: March 28, 2023
    Assignee: MUSCLESOUND, INC.
    Inventors: Pierre Sarnow, Stephen S. Kurtz, Andrew D. Jackson, Wayne Phillips
  • Patent number: 11602304
    Abstract: Provided is a non-invasive system and method for determining a fuel value for a target muscle and potentially at least one indicator muscle. The method includes receiving an ultrasound scan of a target muscle; evaluating at least a portion of the ultrasound scan to determine fuel value within the target muscle; recording the determined fuel value for the muscle as an element of a data set for the muscle; evaluating the fuel data set to determine a value range; and in response to the range being at least above a pre-determined threshold, establishing a target score for the muscle as based on an upper portion of the value range. The method may be repeated to identify ranges for a plurality of muscles, the muscle with the greatest range being identified as an indicator muscle. Based on these findings the muscles estimated fuel level, fuel rating and energy status may be determined. An associated system is also disclosed.
    Type: Grant
    Filed: August 24, 2021
    Date of Patent: March 14, 2023
    Assignee: MUSCLESOUND, INC.
    Inventors: Pierre Sarnow, Stephen S. Kurtz, Andrew D. Jackson, Wayne Phillips
  • Publication number: 20210378587
    Abstract: Provided is a non-invasive system and method for determining a fuel value for a target muscle and potentially at least one indicator muscle. The method includes receiving an ultrasound scan of a target muscle; evaluating at least a portion of the ultrasound scan to determine fuel value within the target muscle; recording the determined fuel value for the muscle as an element of a data set for the muscle; evaluating the fuel data set to determine a value range; and in response to the range being at least above a pre-determined threshold, establishing a target score for the muscle as based on an upper portion of the value range. The method may be repeated to identify ranges for a plurality of muscles, the muscle with the greatest range being identified as an indicator muscle. Based on these findings the muscles estimated fuel level, fuel rating and energy status may be determined. An associated system is also disclosed.
    Type: Application
    Filed: August 24, 2021
    Publication date: December 9, 2021
    Inventors: Pierre Sarnow, Stephen S. Kurtz, Andrew D. Jackson, Wayne Phillips
  • Publication number: 20210338196
    Abstract: Provided is a non-invasive system and method of determining pennation angle and/or fascicle length based on image processing. An ultrasound scan image is processed to facilitate distinguishing of muscle fiber and tendon. The processed ultrasound scan image is then analyzed. The pennation angle and/or fascicle length is determined based on the analysis. An example method includes receiving an ultrasound scan image of at least a portion of a skin layer as disposed above one or more additional tissue layers, the image provided by a plurality of pixels. The method continues by introducing noise into the pixels of the image and thresholding the pixels of the image to provide a binary image having a plurality of structural elements of different sizes. The method continues with morphing the structural elements of the binary image to remove small structural elements and connect large structural elements.
    Type: Application
    Filed: July 13, 2021
    Publication date: November 4, 2021
    Inventors: Pierre Sarnow, Stephen S. Kurtz, Andrew D. Jackson, Wayne Phillips
  • Patent number: 11160493
    Abstract: Provided is a non-invasive system and method for determining a fuel value for a target muscle and potentially at least one indicator muscle. The method includes receiving an ultrasound scan of a target muscle; evaluating at least a portion of the ultrasound scan to determine fuel value within the target muscle; recording the determined fuel value for the muscle as an element of a data set for the muscle; evaluating the fuel data set to determine a value range; and in response to the range being at least above a pre-determined threshold, establishing a target score for the muscle as based on an upper portion of the value range. The method may be repeated to identify ranges for a plurality of muscles, the muscle with the greatest range being identified as an indicator muscle. Based on these findings the muscles estimated fuel level, fuel rating and energy status may be determined. An associated system is also disclosed.
    Type: Grant
    Filed: March 1, 2018
    Date of Patent: November 2, 2021
    Assignee: MuscleSound, Inc.
    Inventors: Pierre Sarnow, Stephen S. Kurtz, Andrew D. Jackson, Wayne Phillips
  • Publication number: 20210321979
    Abstract: Provided is a non-invasive system and method of determining muscle tissue quality based on image processing. The non-invasive system and method includes determining muscle intramuscular fat content. The methods includes receiving at least one ultrasound scan image of at least a portion of a skin layer as disposed above one or more additional tissue layers, the skin layer defining a horizontal axis and the image provided by a plurality of pixels. The method continues by blurring the pixels of the image and thresholding the pixels of the image to provide an image having a plurality of structural elements of different sizes and gray scale. The method continues with morphing the structural elements of the image to remove small structural elements and connect large structural elements. With this resulting image, the method distinguishes muscle tissue from remaining elements. A ratio of black to white elements is evaluated to determine the muscle tissue quality or intramuscular fat content.
    Type: Application
    Filed: June 30, 2021
    Publication date: October 21, 2021
    Inventors: Pierre Sarnow, Stephen S. Kurtz, Andrew D. Jackson, Wayne Phillips
  • Patent number: 11096658
    Abstract: Provided is a non-invasive system and method of determining pennation angle and/or fascicle length based on image processing. An ultrasound scan image is processed to facilitate distinguishing of muscle fiber and tendon. The processed ultrasound scan image is then analyzed. The pennation angle and/or fascicle length is determined based on the analysis. An example method includes receiving an ultrasound scan image of at least a portion of a skin layer as disposed above one or more additional tissue layers, the image provided by a plurality of pixels. The method continues by introducing noise into the pixels of the image and thresholding the pixels of the image to provide a binary image having a plurality of structural elements of different sizes. The method continues with morphing the structural elements of the binary image to remove small structural elements and connect large structural elements.
    Type: Grant
    Filed: October 26, 2017
    Date of Patent: August 24, 2021
    Assignee: MuscleSound, Inc.
    Inventors: Pierre Sarnow, Stephen S. Kurtz, Andrew D. Jackson, Wayne Phillips
  • Publication number: 20210236085
    Abstract: Provided is a non-invasive system and method of determining muscle tissue size based on image processing. The method includes receiving at least one ultrasound scan image of at least a portion of a skin layer as disposed above one or more additional tissue layers, the image provided by a plurality of pixels. The method continues by introducing noise into the pixels of the image and thresholding the pixels of the image to provide a binary image having a plurality of structural elements of different sizes. The method continues with morphing the structural elements of the binary image to remove small structural elements and connect large structural elements. With this resulting image, the method distinguishes muscle tissue from remaining elements and determines the muscle tissue size. Associated apparatuses and computer program products are also disclosed.
    Type: Application
    Filed: April 19, 2021
    Publication date: August 5, 2021
    Inventors: Pierre Sarnow, Stephen S. Kurtz, Andrew D. Jackson, Wayne Phillips
  • Patent number: 11064971
    Abstract: Provided is a non-invasive system and method of determining muscle tissue quality based on image processing. The non-invasive system and method includes determining muscle intramuscular fat content. The methods includes receiving at least one ultrasound scan image of at least a portion of a skin layer as disposed above one or more additional tissue layers, the skin layer defining a horizontal axis and the image provided by a plurality of pixels. The method continues by blurring the pixels of the image and thresholding the pixels of the image to provide an image having a plurality of structural elements of different sizes and gray scale. The method continues with morphing the structural elements of the image to remove small structural elements and connect large structural elements. With this resulting image, the method distinguishes muscle tissue from remaining elements. A ratio of black to white elements is evaluated to determine the muscle tissue quality or intramuscular fat content.
    Type: Grant
    Filed: November 21, 2017
    Date of Patent: July 20, 2021
    Assignee: MuscleSound, Inc.
    Inventors: Pierre Sarnow, Stephen S. Kurtz, Andrew D. Jackson, Wayne Phillips
  • Patent number: 11013490
    Abstract: Provided is a non-invasive system and method of determining muscle tissue size based on image processing. The method includes receiving at least one ultrasound scan image of at least a portion of a skin layer as disposed above one or more additional tissue layers, the image provided by a plurality of pixels. The method continues by introducing noise into the pixels of the image and thresholding the pixels of the image to provide a binary image having a plurality of structural elements of different sizes. The method continues with morphing the structural elements of the binary image to remove small structural elements and connect large structural elements. With this resulting image, the method distinguishes muscle tissue from remaining elements and determines the muscle tissue size. Associated apparatuses and computer program products are also disclosed.
    Type: Grant
    Filed: October 11, 2017
    Date of Patent: May 25, 2021
    Assignee: MuscleSound, Inc.
    Inventors: Pierre Sarnow, Stephen S. Kurtz, Andrew D. Jackson, Wayne Phillips
  • Publication number: 20180249946
    Abstract: Provided is a non-invasive system and method for determining a fuel value for a target muscle and potentially at least one indicator muscle. The method includes receiving an ultrasound scan of a target muscle; evaluating at least a portion of the ultrasound scan to determine fuel value within the target muscle; recording the determined fuel value for the muscle as an element of a data set for the muscle; evaluating the fuel data set to determine a value range; and in response to the range being at least above a pre-determined threshold, establishing a target score for the muscle as based on an upper portion of the value range. The method may be repeated to identify ranges for a plurality of muscles, the muscle with the greatest range being identified as an indicator muscle. Based on these findings the muscles estimated fuel level, fuel rating and energy status may be determined. An associated system is also disclosed.
    Type: Application
    Filed: March 1, 2018
    Publication date: September 6, 2018
    Inventors: Pierre Sarnow, Stephen S. Kurtz, Andrew D. Jackson, Wayne Phillips
  • Publication number: 20180214118
    Abstract: Provided is a non-invasive system and method of determining pennation angle and/or fascicle length based on image processing. An ultrasound scan image is processed to facilitate distinguishing of muscle fiber and tendon. The processed ultrasound scan image is then analyzed. The pennation angle and/or fascicle length is determined based on the analysis. An example method includes receiving an ultrasound scan image of at least a portion of a skin layer as disposed above one or more additional tissue layers, the image provided by a plurality of pixels. The method continues by introducing noise into the pixels of the image and thresholding the pixels of the image to provide a binary image having a plurality of structural elements of different sizes. The method continues with morphing the structural elements of the binary image to remove small structural elements and connect large structural elements.
    Type: Application
    Filed: October 26, 2017
    Publication date: August 2, 2018
    Inventors: Pierre Sarnow, Stephen S. Kurtz, Andrew D. Jackson, Wayne Phillips
  • Publication number: 20180146947
    Abstract: Provided is a non-invasive system and method of determining muscle tissue quality based on image processing. The non-invasive system and method includes determining muscle intramuscular fat content. The methods includes receiving at least one ultrasound scan image of at least a portion of a skin layer as disposed above one or more additional tissue layers, the skin layer defining a horizontal axis and the image provided by a plurality of pixels. The method continues by blurring the pixels of the image and thresholding the pixels of the image to provide an image having a plurality of structural elements of different sizes and gray scale. The method continues with morphing the structural elements of the image to remove small structural elements and connect large structural elements. With this resulting image, the method distinguishes muscle tissue from remaining elements. A ratio of black to white elements is evaluated to determine the muscle tissue quality or intramuscular fat content.
    Type: Application
    Filed: November 21, 2017
    Publication date: May 31, 2018
    Inventors: Pierre Sarnow, Stephen S. Kurtz, Andrew D. Jackson, Wayne Phillips
  • Publication number: 20180132817
    Abstract: Provided is a non-invasive system and method of determining muscle tissue size based on image processing. The method includes receiving at least one ultrasound scan image of at least a portion of a skin layer as disposed above one or more additional tissue layers, the image provided by a plurality of pixels. The method continues by introducing noise into the pixels of the image and thresholding the pixels of the image to provide a binary image having a plurality of structural elements of different sizes. The method continues with morphing the structural elements of the binary image to remove small structural elements and connect large structural elements. With this resulting image, the method distinguishes muscle tissue from remaining elements and determines the muscle tissue size. Associated apparatuses and computer program products are also disclosed.
    Type: Application
    Filed: October 11, 2017
    Publication date: May 17, 2018
    Inventors: Pierre Sarnow, Stephen S. Kurtz, Andrew D. Jackson, Wayne Phillips
  • Patent number: 8326573
    Abstract: A method for characterising the surface profile of a component comprises the steps of a) dividing the surface into at least two regions; b) for each region, measuring the surface and selecting a number of measured points to define a co-ordinate dataset for the region; c) for each region, applying a curve-fitting algorithm to the dataset for the region to define the surface profile of the region; d) combining the defined surface profiles for the regions to produce a defined surface profile for the aerofoil surface. The characterization may be used in the design, analysis and manufacturing steps of product development, thereby decreasing the total time and work required.
    Type: Grant
    Filed: June 21, 2007
    Date of Patent: December 4, 2012
    Assignee: Rolls-Royce PLC
    Inventors: Andrew D Jackson, Peter I Wright, Michael A Howard, Robert J Stafford