Patents by Inventor Andrew D. Sappey

Andrew D. Sappey has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230258870
    Abstract: A demultiplexed filtering method includes propagating an optical beam from an input optical fiber to a diffraction grating to produce a first and a second diffracted beam having a respective first center wavelength ?1 and a second center-wavelength ?2>?1 of the optical beam. The first diffracted beam propagates back toward the input optical fiber at a first diffracted angle determined in part by ?1 and a diffraction order m1 of the first diffracted beam. The second diffracted beam propagates back toward the input optical fiber at a second diffracted angle determined in part by ?2 and a diffraction order m2<m1. The method also includes (i) coupling the first diffracted beam into a first optical fiber of a one-dimensional optical-fiber array that includes the input optical fiber, and (ii) coupling the second diffracted beam into a second optical fiber of the one-dimensional optical-fiber array.
    Type: Application
    Filed: June 25, 2021
    Publication date: August 17, 2023
    Applicant: Onpoint Technologies, LLC
    Inventors: Andrew D. SAPPEY, Bernard P. MASTERSON, Pei HUANG
  • Publication number: 20230258559
    Abstract: A laser-heterodyne combustion-efficiency monitor captures light emitted from a combustion zone during combustion and determines combustion efficiency based on the captured light. The monitor includes an optical detector that generates an electrical response by mixing the captured light with an optical local-oscillator signal, and a signal filter that filters the electrical response to isolate a beat-note that is proportional to a target-species concentration in the combustion zone. The frequency of the local-oscillator signal determines the target species, which may be carbon monoxide, carbon dioxide, or another emission or absorption line that can be detected using laser-heterodyne radiometry. A laser generates the local-oscillator signal. The monitor may be extended to operate with several lasers emitting several local-oscillator signals at different frequencies, thereby allowing multiple target species to be detected simultaneously.
    Type: Application
    Filed: July 1, 2021
    Publication date: August 17, 2023
    Applicant: Onpoint Technologies, LLC
    Inventor: Andrew D. SAPPEY
  • Publication number: 20230087358
    Abstract: Measuring a concentration of at least one target species is described. A first and second tunable diode laser are configured to generate laser light at a respective wavelength different from one another. A pitch head comprising a transmitting optic is optically coupled to the first and second tunable diode lasers via distal ends of the first and second optical fibers, and is oriented to project respective beams from each of the first and second distal ends through a measurement zone. A photodetector is configured to detect an optical power of light in the first and second wavelengths. A catch head located across the measurement zone from the pitch head is in optical communication with the pitch head to receive the respective beams from the first and second distal ends and direct the respective beams to the photodetector.
    Type: Application
    Filed: October 10, 2022
    Publication date: March 23, 2023
    Applicant: OnPoint Technologies, LLC
    Inventors: Andrew D. SAPPEY, Bernard Patrick MASTERSON
  • Patent number: 11513069
    Abstract: Systems for measuring a concentration of a target species include a first and second tunable diode laser generating laser light at a respective first and second wavelength each corresponding to respective absorption lines of the target species. A first optical fiber is optically coupled to the first tunable diode laser, and does not support a fundamental mode at the second wavelength. A second optical fiber is coupled to the second tunable diode laser and does not support a fundamental mode at the first wavelength. A fiber bundle includes respective distal ends of the first and second optical fibers, which are stripped of their respective coatings and arranged with their claddings adjacent to each other. A pitch head is configured to project respective optical beams from the fiber bundle through a measurement zone. A catch head located across the measurement zone receives the projected beams and directs them to a sensor.
    Type: Grant
    Filed: October 19, 2020
    Date of Patent: November 29, 2022
    Assignee: OnPoint Technologies, LLC
    Inventors: Andrew D. Sappey, Bernard Patrick Masterson
  • Patent number: 10948184
    Abstract: A tunable diode laser absorption spectroscopy (TDLAS) optical head includes a housing configured for attachment to a sight tube attached to a wall of a process chamber. The TDLAS optical head further includes optics within the housing for transmitting, receiving, or transmitting and receiving a laser beam within a process chamber through the sight tube. The TDLAS optical head further includes a photo sensor in the housing positioned to receive light emitted by combustion within the process chamber to which the housing is attached.
    Type: Grant
    Filed: June 19, 2019
    Date of Patent: March 16, 2021
    Assignee: OnPoint Technologies, LLC
    Inventors: Bernard P Masterson, Michael John Estes, Andrew D. Sappey
  • Publication number: 20210033529
    Abstract: Systems for measuring a concentration of a target species include a first and second tunable diode laser generating laser light at a respective first and second wavelength each corresponding to respective absorption lines of the target species. A first optical fiber is optically coupled to the first tunable diode laser, and does not support a fundamental mode at the second wavelength. A second optical fiber is coupled to the second tunable diode laser and does not support a fundamental mode at the first wavelength. A fiber bundle includes respective distal ends of the first and second optical fibers, which are stripped of their respective coatings and arranged with their claddings adjacent to each other. A pitch head is configured to project respective optical beams from the fiber bundle through a measurement zone. A catch head located across the measurement zone receives the projected beams and directs them to a sensor.
    Type: Application
    Filed: October 19, 2020
    Publication date: February 4, 2021
    Applicant: c/o OnPoint Technologies, LLC
    Inventors: Andrew D. SAPPEY, Bernard Patrick MASTERSON
  • Patent number: 10830698
    Abstract: A method for measuring a concentration of at least one target species includes generating first and second laser beams having respective first and second wavelengths each corresponding to respective absorption lines of the at least one target species. The method includes coupling the first and second laser beams to proximal ends of first and second fundamental modes of first and second optical waveguides, respectively. The method includes transmitting through a measurement zone, for a distal end of the first and second optical waveguides, a probe signal including the first and second laser beam. The method includes determining a first signal strength of the probe signal at the first wavelength and a second signal strength of the probe signal at the second wavelength, and determining, from the first signal strength and the second signal strength, a concentration of the at least one target species.
    Type: Grant
    Filed: June 14, 2019
    Date of Patent: November 10, 2020
    Assignee: OnPoint Technologies, LLC
    Inventors: Andrew D. Sappey, Bernard Patrick Masterson
  • Patent number: 10738997
    Abstract: Sensing of gas species characteristics within a process chamber includes selectively projecting a beam of a first select lasing frequency therethough. The beam is optically coupled to a detector to detect a process transmission spectrum having an absorption dip at a select lasing frequency caused by a gas species characteristic. The beam is selectively projected through a fiber Bragg grating which is formed in an optical fiber core to partially reflect at least a portion of the beam of the first select lasing frequency while passing a remainder of the beam. The remainder of the beam has an FBG transmission spectrum mimicking the absorption dip at or near the select lasing frequency caused by a gas species characteristic of interest. It is optically coupled the detector. Outputs of the detector are monitored to compare the FBG transmission spectrum to any process transmission spectrum produced in the process chamber.
    Type: Grant
    Filed: March 21, 2017
    Date of Patent: August 11, 2020
    Assignee: ONPOINT TECHNOLOGIES, LLC
    Inventors: Dave Giltner, Andrew D. Sappey
  • Publication number: 20190301737
    Abstract: A tunable diode laser absorption spectroscopy (TDLAS) optical head includes a housing configured for attachment to a sight tube attached to a wall of a process chamber. The TDLAS optical head further includes optics within the housing for transmitting, receiving, or transmitting and receiving a laser beam within a process chamber through the sight tube. The TDLAS optical head further includes a photo sensor in the housing positioned to receive light emitted by combustion within the process chamber to which the housing is attached.
    Type: Application
    Filed: June 19, 2019
    Publication date: October 3, 2019
    Applicant: John Zink Company, LLC
    Inventors: Bernard P. Masterson, Michael John Estes, Andrew D. Sappey
  • Publication number: 20190293553
    Abstract: A method for measuring a concentration of at least one target species includes generating first and second laser beams having respective first and second wavelengths each corresponding to respective absorption lines of the at least one target species. The method includes coupling the first and second laser beams to proximal ends of first and second fundamental modes of first and second optical waveguides, respectively. The method includes transmitting through a measurement zone, for a distal end of the first and second optical waveguides, a probe signal including the first and second laser beam. The method includes determining a first signal strength of the probe signal at the first wavelength and a second signal strength of the probe signal at the second wavelength, and determining, from the first signal strength and the second signal strength, a concentration of the at least one target species.
    Type: Application
    Filed: June 14, 2019
    Publication date: September 26, 2019
    Applicant: John Zink Company, LLC
    Inventors: Andrew D. Sappey, Bernard Patrick Masterson
  • Patent number: 10371378
    Abstract: A method of monitoring blockage of a sight tube attached to a wall of a process chamber, the sight tube being operatively associated with a TDLAS optical head with a window between the sight tube and the TDLAS optical head. The method includes the steps of providing a photo sensor in the TDLAS optical head, the photo sensor being positioned to receive light emitted by a light emitting process within the process chamber. An emission signal produced by light emitted by the light emitting process within the process chamber being received by the photo sensor is monitored. A determination is made if the emission signal is degrading.
    Type: Grant
    Filed: December 22, 2014
    Date of Patent: August 6, 2019
    Assignee: John Zink Company, LLC
    Inventors: Bernard P Masterson, Michael John Estes, Andrew D Sappey
  • Patent number: 10352852
    Abstract: A system for widely spaced wavelength tunable diode laser absorption spectroscopy includes at least a first and second tunable diode laser generating laser light at a first and second wavelength, wherein laser light of the first and second wavelengths cannot co-propagate efficiently on the same single-mode fiber. A first fiber may be configured to carry light in the first wavelength, and a second fiber configured to carry light in the second wavelength. A fiber bundle may be formed from the distal ends of the first and second fibers stripped of their respective coatings, and arranged with their claddings adjacent to each other. One or more pitch heads are configured to project respective beams of laser light from the fiber bundle through a measurement zone. One or more catch heads located across the measurement zone receive the respective beams and direct the respective beams onto at least one sensor.
    Type: Grant
    Filed: November 18, 2015
    Date of Patent: July 16, 2019
    Assignee: JOHN ZINK COMPANY, LLC
    Inventors: Andrew D. Sappey, Bernard Patrick Masterson
  • Publication number: 20190128520
    Abstract: Sensing of gas species characteristics within a process chamber includes selectively projecting a beam of a first select lasing frequency therethough. The beam is optically coupled to a detector to detect a process transmission spectrum having an absorption dip at a select lasing frequency caused by a gas species characteristic. The beam is selectively projected through a fiber Bragg grating which is formed in an optical fiber core to partially reflect at least a portion of the beam of the first select lasing frequency while passing a remainder of the beam. The remainder of the beam has an FBG transmission spectrum mimicking the absorption dip at or near the select lasing frequency caused by a gas species characteristic of interest. It is optically coupled the detector. Outputs of the detector are monitored to compare the FBG transmission spectrum to any process transmission spectrum produced in the process chamber.
    Type: Application
    Filed: March 21, 2017
    Publication date: May 2, 2019
    Applicant: John Zink Company, LLC
    Inventors: Dave GILTNER, Andrew D. SAPPEY
  • Publication number: 20180038788
    Abstract: A system for widely spaced wavelength tunable diode laser absorption spectroscopy includes at least a first and second tunable diode laser generating laser light at a first and second wavelength, wherein laser light of the first and second wavelengths cannot co-propagate efficiently on the same single-mode fiber. A first fiber may be configured to carry light in the first wavelength, and a second fiber configured to carry light in the second wavelength. A fiber bundle may be formed from the distal ends of the first and second fibers stripped of their respective coatings, and arranged with their claddings adjacent to each other. One or more pitch heads are configured to project respective beams of laser light from the fiber bundle through a measurement zone. One or more catch heads located across the measurement zone receive the respective beams and direct the respective beams onto at least one sensor.
    Type: Application
    Filed: November 18, 2015
    Publication date: February 8, 2018
    Inventors: Andrew D. Sappey, Bernard Patrick Masterson
  • Publication number: 20160313003
    Abstract: A method of monitoring blockage of a sight tube attached to a wall of a process chamber, the sight tube being operatively associated with a TDLAS optical head with a window between the sight tube and the TDLAS optical head. The method includes the steps of providing a photo sensor in the TDLAS optical head, the photo sensor being positioned to receive light emitted by a light emitting process within the process chamber. An emission signal produced by light emitted by the light emitting process within the process chamber being received by the photo sensor is monitored. A determination is made if the emission signal is degrading.
    Type: Application
    Filed: December 22, 2014
    Publication date: October 27, 2016
    Inventors: Bernard P Masterson, Michael John Estes, Andrew D. Sappey
  • Patent number: 9366621
    Abstract: A method of monitoring combustion properties in an interior of a furnace is described. A beam of light is projected through a pitch optic including a pitch collimating lens residing outside the boiler interior. The pitch collimating lens projects the beam through a penetration into the boiler interior. The beam of light projected by the pitch collimating lens is reflected from at least one in-furnace retro-reflector, and received with a catch optic substantially identical to the pitch optic residing outside the boiler interior. The pitch optic and the catch optic may be embodied in the same pitch/catch optic. The pitch collimating lens may also be steered toward another of the at least one in-furnace retro-reflectors. Combustion properties may be calculated for each retro-reflector based on retro-reflector zones within the furnace.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: June 14, 2016
    Assignee: Zolo Technologies, Inc.
    Inventors: Jim Howell, Bernard Patrick Masterson, Rod Harris, David Giltner, Atilio Jobson, Michael John Estes, Andrew D. Sappey
  • Publication number: 20150109618
    Abstract: A method of monitoring combustion properties in an interior of a furnace is described. A beam of light is projected through a pitch optic including a pitch collimating lens residing outside the boiler interior. The pitch collimating lens projects the beam through a penetration into the boiler interior. The beam of light projected by the pitch collimating lens is reflected from at least one in-furnace retro-reflector, and received with a catch optic substantially identical to the pitch optic residing outside the boiler interior. The pitch optic and the catch optic may be embodied in the same pitch/catch optic. The pitch collimating lens may also be steered toward another of the at least one in-furnace retro-reflectors. Combustion properties may be calculated for each retro-reflector based on retro-reflector zones within the furnace.
    Type: Application
    Filed: March 15, 2013
    Publication date: April 23, 2015
    Applicant: ZOLO Technologies, Inc.
    Inventors: Jim Howell, Bernard Patrick Masterson, Rod Harris, David Giltner, Atilio Jobson, Michael John Estes, Andrew D. Sappey
  • Patent number: 8786856
    Abstract: A method of monitoring combustion properties in an interior of a boiler of the type having walls comprising a plurality of parallel steam tubes separated by a metal membrane. First and second penetrations are provided in the metal membrane between adjacent tubes on opposite sides of the boiler. A beam of light is projected through a pitch optic comprising a pitch collimating lens and a pitch relay lens, both residing outside the boiler interior. The pitch relay lens projects the beam through a penetration into the boiler interior. The beam of light is received with a catch optic substantially identical to the pitch optic residing outside the boiler interior. The strength of the collimated received beam of light is determined. At least one of the pitch collimating lens and the catch collimating lens may then be aligned to maximize the strength of the collimated received beam.
    Type: Grant
    Filed: January 7, 2010
    Date of Patent: July 22, 2014
    Assignee: Zolo Technologies, Inc.
    Inventors: Michael John Estes, Andrew D. Sappey, Henrik Hofvander, Allen Molitoris, Bernard Patrick Masterson, Pei Huang
  • Patent number: 8786857
    Abstract: An apparatus and methods for measuring combustion parameters in the measurement zone of a gas turbine engine. The measurement zone is defined as being between an outer casing and an engine component having a reflecting surface inside the outer casing. The apparatus comprises a laser generating a transmitting beam of light of a select wavelength and a multimode transmitting fiber optically coupled to the laser. A transmitting optic is optically coupled to the multimode optical fiber for transmitting the beam into the measurement zone. The reflecting surface is configured to provide a Lambertian reflection. A receiving optic is positioned to receive the Lambertian reflection. Means are provided in operative association with the multimode transmitting fiber for averaging modal noise induced signal level variation of light propagating within the multimode transmitting fiber.
    Type: Grant
    Filed: August 10, 2010
    Date of Patent: July 22, 2014
    Assignee: Zolo Technologies, Inc.
    Inventors: Bernard Patrick Masterson, James Howell, Henrik Hofvander, Andrew D. Sappey
  • Patent number: 8699011
    Abstract: A method of absorption spectroscopy to determine a rapidly variable gas parameter. The method includes transmitting light from a synchronization light source to a synchronization detector. The transmitted light is periodically interrupted by a moving mechanical part between the synchronization light source and synchronization detector. The output from the synchronization detector is used to generate a repeating time signal having variable phase delay. This signal is used to control the timing of laser spectroscopy wavelength scans. Multiple spectroscopic scans may be repeated at multiple selected time signal phase delay and the results averaged for each phase. Apparatus for implementing the above methods are also disclosed.
    Type: Grant
    Filed: May 10, 2011
    Date of Patent: April 15, 2014
    Assignee: Zolo Technologies, Inc.
    Inventors: Henrik Hofvander, Bernard P Masterson, Andrew D Sappey, James Howell, David Owenby, Lee Sutherland, Michael J Estes