Patents by Inventor Andrew D. Stapleton

Andrew D. Stapleton has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9020306
    Abstract: Embodiments of the present invention provide stable lithium niobate waveguide devices, and methods of making and using the same. A lithium niobate-based waveguide device may include a Z-cut lithium niobate substrate having upper and lower surfaces, an optical waveguide embedded within the lithium niobate substrate, a signal electrode disposed on the upper surface of lithium niobate substrate and parallel to the optical waveguide, guard electrodes disposed on the upper surface of the lithium niobate substrate and flanking but spaced apart from the signal electrode, and a conductive layer on the lower surface of the lithium niobate substrate, wherein the conductive layer serves as a common ground reference for the signal and guard electrodes.
    Type: Grant
    Filed: March 14, 2013
    Date of Patent: April 28, 2015
    Assignee: The Aerospace Corporation
    Inventors: Heinrich G. Muller, Andrew D. Stapleton
  • Publication number: 20140270617
    Abstract: Embodiments of the present invention provide stable lithium niobate waveguide devices, and methods of making and using the same. A lithium niobate-based waveguide device may include a Z-cut lithium niobate substrate having upper and lower surfaces, an optical waveguide embedded within the lithium niobate substrate, a signal electrode disposed on the upper surface of lithium niobate substrate and parallel to the optical waveguide, guard electrodes disposed on the upper surface of the lithium niobate substrate and flanking but spaced apart from the signal electrode, and a conductive layer on the lower surface of the lithium niobate substrate, wherein the conductive layer serves as a common ground reference for the signal and guard electrodes.
    Type: Application
    Filed: March 14, 2013
    Publication date: September 18, 2014
    Applicant: The Aerospace Corporation
    Inventors: Heinrich G. MULLER, Andrew D. STAPLETON
  • Patent number: 7961995
    Abstract: An electrically modulated plasmonic junction generates surface plasmons from an electrical signal from an electrical source, with the tunnel junction having a contact with a tapered end forming the junction in a gap between the contact and a substrate, with the gap serving to translate electrical signals into surface plasmons that are in turn translated into emitted photons communicated externally through a transmissive oxide, so that the junction can function as an electrically controlled light emitter preferably built as a nano-scale broadband optical emitter whose output wavelength can be electrically tuned over hundreds of nanometers, can be directly modulated at high speeds, and can have improved efficiencies compared to standard silicon optical sources, and the junction can also operate in a reserve mode for light detection.
    Type: Grant
    Filed: September 16, 2008
    Date of Patent: June 14, 2011
    Assignee: The Aerospace Corporation
    Inventors: Josh A. Conway, Andrew D. Stapleton
  • Publication number: 20100066238
    Abstract: An electrically modulated plasmonic junction generates surface plasmons from an electrical signal from an electrical source, with the tunnel junction having a contact with a tapered end forming the junction in a gap between the contact and a substrate, with the gap serving to translate electrical signals into surface plasmons that are in turn translated into emitted photons communicated externally through a transmissive oxide, so that the junction can function as an electrically controlled light emitter preferably built as a nano-scale broadband optical emitter whose output wavelength can be electrically tuned over hundreds of nanometers, can be directly modulated at high speeds, and can have improved efficiencies compared to standard silicon optical sources, and the junction can also operate in a reserve mode for light detection.
    Type: Application
    Filed: September 16, 2008
    Publication date: March 18, 2010
    Inventors: Josh A. Conway, Andrew D. Stapleton