Patents by Inventor Andrew DiGiore

Andrew DiGiore has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8914112
    Abstract: Methods and systems of treating a patient with pancreatitis pain include providing a stimulator, configuring one or more stimulation parameters to control sphincter of Oddi function, programming the stimulator with the one or more stimulation parameters, generating a stimulus configured to control sphincter of Oddi function with the stimulator in accordance with the one or more stimulation parameters, and applying the stimulus with the stimulator to one or more stimulation sites in accordance with the one or more stimulation parameters.
    Type: Grant
    Filed: January 22, 2009
    Date of Patent: December 16, 2014
    Assignee: Boston Scienctific Neuromodulation Corporation
    Inventors: Todd K. Whitehurst, Rafael Carbunaru, Kristen N. Jaax, Andrew DiGiore, Brett Schleicher, Greg Baldwin, Roger Hastings
  • Patent number: 8897889
    Abstract: A lead includes a lead body with a distal end and a proximal end. A plurality of terminals are disposed at the proximal end of the lead body. A plurality of electrodes are disposed at the distal end of the lead body. Each electrode includes an electrode body and at least one anchoring member. The at least one anchoring member couples to the electrode body and extends into the lead body and beneath the electrode body to anchor the electrode to the lead body. A plurality of conductive wires electrically couple the plurality of electrodes to the plurality of terminals.
    Type: Grant
    Filed: January 18, 2013
    Date of Patent: November 25, 2014
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventors: Anne Margaret Pianca, Andrew DiGiore
  • Publication number: 20140343631
    Abstract: Exemplary systems include a stimulator configured to be implanted within a patient, the stimulator having a body defined by at least one side surface disposed in between distal and proximal end surfaces, and a connector assembly configured to be coupled to the stimulator and extend parallel to the at least one side surface of the stimulator. The connector assembly is further configured to facilitate removable coupling of a lead having one or more electrodes disposed thereon to the stimulator.
    Type: Application
    Filed: July 31, 2014
    Publication date: November 20, 2014
    Inventors: Brett Schleicher, Rafael Carbunaru, Todd K. Whitehurst, Kristen N. Jaax, Greg Baldwin, Andrew DiGiore
  • Patent number: 8855769
    Abstract: Exemplary systems include a stimulator configured to be implanted within a patient, the stimulator having a body defined by at least one side surface disposed in between distal and proximal end surfaces, and a connector assembly configured to be coupled to the stimulator and extend parallel to the at least one side surface of the stimulator. The connector assembly is further configured to facilitate removable coupling of a lead having one or more electrodes disposed thereon to the stimulator.
    Type: Grant
    Filed: February 4, 2014
    Date of Patent: October 7, 2014
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventors: Brett Schleicher, Rafael Carbunaru, Todd K. Whitehurst, Kristen N. Jaax, Greg Baldwin, Andrew DiGiore
  • Publication number: 20140243945
    Abstract: The burr hole plug comprises a plug base configured for being mounted around a burr hole, and having an aperture through which an elongated medical device exiting the burr hole may pass. The burr hole plug further comprises a retainer configured for being mounted within the plug base aperture. The retainer includes a retainer support, a slot formed in the retainer support for receiving the medical device, and a clamping mechanism having a clamping bar and a flange slidably engaged with the retainer support to laterally slide the clamping bar to secure the medical device. A method comprises introducing the medical device through the burr hole, mounting the plug base around the burr hole, mounting the retainer within the plug base aperture, receiving the medical device into the slot, and sliding the slidable flange relative to the retainer support to laterally slide to secure the medical device.
    Type: Application
    Filed: April 30, 2014
    Publication date: August 28, 2014
    Applicant: BOSTON SCIENTIFIC NEUROMODULATION CORPORATION
    Inventors: Courtney Lane, Jesse Geroy, James C. Makous, Todd Whitehurst, Matthew Flowers, John Michael Barker, Terry Ferrell, John Swoyer, Brett Schleicher, Jeff Gagnon, Andrew DiGiore, Ellis Garai, Kristen Jaax, Rafael Carbunaru
  • Patent number: 8751016
    Abstract: A nerve stimulation lead has a distal end, a proximal end, and a longitudinal length. The nerve stimulation lead includes a plurality of electrodes disposed at the distal end, a plurality of terminals disposed at the proximal end, and a plurality of conductive wires electrically coupling the plurality of electrodes electrically to the plurality of terminals. The nerve stimulation lead also includes at least one anchoring unit disposed on the nerve stimulation lead. The at least one anchoring unit is configured and arranged for anchoring the nerve stimulation lead against a bony structure.
    Type: Grant
    Filed: August 12, 2013
    Date of Patent: June 10, 2014
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventors: Brett Daniel Schleicher, Andrew DiGiore, Rafael Carbunaru, Courtney Lane, Kristen N. Jaax
  • Publication number: 20140155957
    Abstract: Exemplary systems include a stimulator configured to be implanted within a patient, the stimulator having a body defined by at least one side surface disposed in between distal and proximal end surfaces, and a connector assembly configured to be coupled to the stimulator and extend parallel to the at least one side surface of the stimulator. The connector assembly is further configured to facilitate removable coupling of a lead having one or more electrodes disposed thereon to the stimulator.
    Type: Application
    Filed: February 4, 2014
    Publication date: June 5, 2014
    Applicant: BOSTON SCIENTIFIC NEUROMODULATION CORPORATION
    Inventors: Brett Schleicher, Rafael Carbunaru, Todd K. Whitehurst, Kristen N. Jaax, Greg Baldwin, Andrew DiGiore
  • Patent number: 8731686
    Abstract: A burr hole plug comprises a plug base configured for being mounted around a burr hole. The plug base includes an aperture through which an elongated medical device exiting the burr hole may pass. The burr hole plug further comprises a retainer configured for being mounted within the aperture of the plug base. The retainer further includes first and second slidable clamping mechanisms configured for securing the medical devices therebetween within the aperture of the plug base. A method comprises introducing the medical device through the burr hole, mounting a plug base around the burr hole, such that the medical device extends through the plug base aperture, mounting the retainer within the aperture of the plug base, and sliding the first and second clamping mechanisms secure the medical device therebetween.
    Type: Grant
    Filed: December 3, 2009
    Date of Patent: May 20, 2014
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventors: Courtney Lane, Jesse Geroy, James C. Makous, Todd Whitehurst, Matthew Flowers, John Michael Barker, Terry Ferrell, John Swoyer, Brett Schleicher, Jeff Gagnon, Andrew DiGiore, Ellis Garai, Kristen Jaax, Rafael Carbunaru
  • Publication number: 20140123484
    Abstract: One embodiment is a stimulation lead including a lead body comprising a longitudinal surface, a distal end, and a proximal end; and multiple electrodes disposed along the longitudinal surface of the lead body near the distal end of the lead body. The multiple electrodes include multiple segmented electrodes with each of the segmented electrodes having an exterior surface, an interior surface opposite the exterior surface, a proximal end, and a distal end. At least one of the segmented electrodes includes one or more of a) at least one channel formed in the segmented electrode and extending from the proximal end to the distal end of the segmented electrode, b) an arcuate groove formed in at least one of the distal end surface or the proximal end surface, or c) a notch formed in the segmented electrode and extending from the proximal end to the distal end of the segmented electrode.
    Type: Application
    Filed: January 15, 2014
    Publication date: May 8, 2014
    Applicant: BOSTON SCIENTIFIC NEUROMODULATION CORPORATION
    Inventors: Andrew DiGiore, Anne Margaret Pianca, Michael Adam Moffitt
  • Publication number: 20140084860
    Abstract: Apparatus and methods for charging an implanted medical device.
    Type: Application
    Filed: November 26, 2013
    Publication date: March 27, 2014
    Applicant: BOSTON SCIENTIFIC NEUROMODULATION CORPORATION
    Inventors: Kristen Jaax, Rafael Carbunaru, Mun Pook Lui, Todd K. Whitehurst, Andrew DiGiore, Brett Daniel Schleicher, Gregory Baldwin, Michael A. Moffitt, Jeffery Van Funderburk, James C. Makous
  • Patent number: 8682438
    Abstract: Exemplary systems include a stimulator configured to be implanted within a patient, the stimulator having a body defined by at least one side surface disposed in between distal and proximal end surfaces, and a connector assembly configured to be coupled to the stimulator and extend parallel to the at least one side surface of the stimulator. The connector assembly is further configured to facilitate removable coupling of a lead having one or more electrodes disposed thereon to the stimulator.
    Type: Grant
    Filed: January 7, 2013
    Date of Patent: March 25, 2014
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventors: Brett Schleicher, Rafael Carbunaru, Todd K. Whitehurst, Kristen N. Jaax, Greg Baldwin, Andrew DiGiore
  • Patent number: 8676322
    Abstract: Methods and systems of treating a patient with pancreatitis pain include providing a stimulator, configuring one or more stimulation parameters to treat pancreatitis pain, programming the stimulator with the one or more stimulation parameters, generating a stimulus configured to treat pancreatitis pain with the stimulator in accordance with the one or more stimulation parameters, and applying the stimulus with the stimulator to one or more stimulation sites in accordance with the one or more stimulation parameters.
    Type: Grant
    Filed: January 22, 2009
    Date of Patent: March 18, 2014
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventors: Todd K. Whitehurst, Kristen N. Jaax, Rafael Carbunaru, Greg Baldwin, Brett Schleicher, Andrew DiGiore, Roger Hastings
  • Patent number: 8670833
    Abstract: A system and method for applying stimulation to a target stimulation site within a patient, while avoiding undesirable eye movement side effects of the stimulation, are provided. The method includes determining whether eye movement, sensed by internal or external electrodes, is a side effect of a conveyed electrical stimulus. If the eye movement is a side effect, the electrical current distribution of the stimulus is modified in order to steer a locus of the electrical stimulus from one tissue region of the patient to another different tissue region of the patient, thereby mitigating the eye movement side effects. For example, the locus of the electrical stimulus may be steered away from the oculomotor nerve. Eye movement side effects of DBS treatment may include apraxia of lid opening, downward movement and adduction of only one eyeball, and/or continuous deviation of both eyeballs.
    Type: Grant
    Filed: December 3, 2010
    Date of Patent: March 11, 2014
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventors: James Makous, Brett Schleicher, Rafael Carbunaru, Kristen Jaax, Andrew DiGiore
  • Publication number: 20140067004
    Abstract: Methods for treating seizures caused by brain stimulation include providing a stimulator, programming the stimulator with one or more stimulation parameters configured to treat a medical condition, applying at least one stimulus with the stimulator to a stimulation site within the brain of a patient in accordance with the one or more stimulation parameters, and monitoring the patient for a seizure caused by the at least one stimulus.
    Type: Application
    Filed: November 6, 2013
    Publication date: March 6, 2014
    Applicant: BOSTON SCIENTIFIC NEUROMODULATION CORPORATION
    Inventors: Todd K. Whitehurst, Rafael Carbunaru, Kristen N. Jaax, Andrew DiGiore, Brett Schleicher, Greg Baldwin
  • Patent number: 8666493
    Abstract: Systems and techniques for improving the fixation of implantable pulse generators. In one aspect, a device includes an implantable pulse generator that comprises electrical circuitry configured to generate an electrical pulse and a biocompatible casing that houses the electrical circuitry and on which a collection of electrodes and a collection of fixation elements are mounted. The electrodes are in electrical contact with the electrical circuitry and the fixation elements increase the surface area of the biocompatible casing to reduce the likelihood that the biocompatible casing shifts after implantation.
    Type: Grant
    Filed: January 28, 2013
    Date of Patent: March 4, 2014
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventors: Brett Daniel Schleicher, Todd K. Whitehurst, Andrew DiGiore
  • Patent number: 8660644
    Abstract: A method of operating a neurostimulation device comprises outputting a pulsed electrical waveform from the neurostimulation device between a plurality of electrodes while at least one of the electrodes has a first polarity, thereby stimulating neural tissue adjacent the electrode(s), allowing the neural tissue to undergo neurological accommodation in response to the electrical energy output between the electrodes, switching the electrode(s) from the first polarity to a second polarity, outputting the pulsed electrical waveform from the neurostimulation device between the electrodes while the electrode(s) has the second polarity, thereby hyperpolarizing the neural tissue to reverse the neurological accommodation, switching the electrode(s) from the second polarity to the first polarity, and outputting the pulsed electrical waveform from the neurostimulation device between the electrodes while the electrode(s) has the first polarity, thereby stimulating the previously hyperpolarized neural tissue.
    Type: Grant
    Filed: October 31, 2012
    Date of Patent: February 25, 2014
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventors: Kristen Jaax, Courtney Lane, Michael Moffitt, Andrew DiGiore, Mark Pierre, Kerry Bradley, Gregory Baldwin
  • Patent number: 8655457
    Abstract: A paddle lead includes a paddle body with a plurality of electrodes disposed on the paddle body. The plurality of electrodes includes a first electrode and a second electrode. The first electrode and the second electrode are disposed laterally around the circumference of the paddle body. At least one connecting wire is disposed on, or within, the paddle body to electrically couple the first electrode and the second electrode.
    Type: Grant
    Filed: July 22, 2013
    Date of Patent: February 18, 2014
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventors: Andrew DiGiore, Greg Baldwin
  • Patent number: 8649879
    Abstract: One embodiment is a stimulation lead including a lead body comprising a longitudinal surface, a distal end, and a proximal end; and multiple electrodes disposed along the longitudinal surface of the lead body near the distal end of the lead body. The multiple electrodes include multiple segmented electrodes with each of the segmented electrodes having an exterior surface, an interior surface opposite the exterior surface, a proximal end, and a distal end. At least one of the segmented electrodes includes one or more of a) at least one channel formed in the segmented electrode and extending from the proximal end to the distal end of the segmented electrode, b) an arcuate groove formed in at least one of the distal end surface or the proximal end surface, or c) a notch formed in the segmented electrode and extending from the proximal end to the distal end of the segmented electrode.
    Type: Grant
    Filed: February 8, 2012
    Date of Patent: February 11, 2014
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventors: Andrew DiGiore, Anne Margaret Pianca, Michael Adam Moffitt
  • Publication number: 20140039590
    Abstract: One embodiment is a stimulation lead including a lead body comprising a longitudinal surface, a distal end, and a proximal end; and multiple electrodes disposed along the longitudinal surface of the lead body near the distal end of the lead body. The multiple electrodes include multiple segmented electrodes. At least a first portion of the lead body, proximal to the electrodes, is transparent or translucent and at least a second portion of the lead body, separating two or more of the segmented electrodes, is opaque so that the segmented electrodes separated by the second portion of the lead body are visually distinct. Alternatively or additionally, the stimulation lead can include an indicator ring, a stripe, a groove, or a marking aligned with one or more of the segmented electrodes.
    Type: Application
    Filed: October 14, 2013
    Publication date: February 6, 2014
    Applicant: BOSTON SCIENTIFIC NEUROMODULATION CORPORATION
    Inventors: Michael Adam Moffitt, Anne Margaret Pianca, Andrew DiGiore
  • Patent number: 8626297
    Abstract: Apparatus and methods for charging an implanted medical device.
    Type: Grant
    Filed: September 19, 2008
    Date of Patent: January 7, 2014
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventors: Kristen Jaax, Rafael Carbunaru, Mun Pook Lui, Todd K. Whitehurst, Andrew DiGiore, Brett Daniel Schleicher, Gregory Baldwin, Michael A. Moffitt, Jeffery Van Funderburk, Jim Makous