Patents by Inventor Andrew E. Frerichs

Andrew E. Frerichs has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11607744
    Abstract: This disclosure relates to weldability of steel alloys that provide weld joints which retain hardness values in a heat affected zone adjacent to a fusion zone and which also have improved resistance to liquid metal embrittlement due to the presence of zinc coatings.
    Type: Grant
    Filed: March 29, 2021
    Date of Patent: March 21, 2023
    Assignee: United States Steel Corporation
    Inventors: Daniel James Branagan, Alla V. Sergueeva, Brian E. Meacham, Andrew E. Frerichs, Sheng Cheng, Scott T. Larish, Grant G. Justice, Andrew T. Ball, Craig S. Parsons, Logan J. Tew, Scott T. Anderson, Kurtis R. Clark, Taylor L. Giddens, Tad V. Machrowicz, Jonathan M. Cischke
  • Patent number: 11560605
    Abstract: This disclosure is related to high yield strength steel where mechanical properties, such as elongation, ultimate tensile strength and yield strength in a sheet are maintained or enhanced via thermal treatment optionally provided during a galvanization coating operation.
    Type: Grant
    Filed: February 6, 2020
    Date of Patent: January 24, 2023
    Assignee: United States Steel Corporation
    Inventors: Daniel James Branagan, Andrew E. Frerichs, Brian E. Meacham, Grant G. Justice, Kurtis Clark, Logan J. Tew, Scott T. Anderson, Scott Larish, Sheng Cheng, Alla V Sergueeva
  • Patent number: 11254996
    Abstract: This invention relates to prevention of delayed cracking of metal alloys during drawing which may occur from hydrogen attack. The alloys find applications in parts or components used in vehicles, such as bodies in white, vehicular frames, chassis, or panels.
    Type: Grant
    Filed: June 24, 2019
    Date of Patent: February 22, 2022
    Assignee: United States Steel Corporation
    Inventors: Daniel James Branagan, Andrew E. Frerichs, Brian E. Meacham, Grant G. Justice, Kurtis Clark, Logan J. Tew, Scott T. Anderson, Scott Larish, Sheng Cheng, Taylor L. Giddens, Alla V. Sergueeva, Andrew T. Ball, Jason K. Walleser
  • Publication number: 20210238703
    Abstract: This disclosure is directed at mechanical property improvement in a metallic alloy that has undergone one or more mechanical property losses as a consequence of forming an edge, such as in the formation of an internal hole or an external edge. Methods are disclosed that provide the ability to improve mechanical properties of metallic alloys that have been formed with one or more edges placed in the metallic alloy by a variety of methods which may otherwise serve as a limiting factor for industrial applications.
    Type: Application
    Filed: April 12, 2021
    Publication date: August 5, 2021
    Inventors: Daniel James Branagan, Andrew E. Frerichs, Brian E. Meacham, Grant G. Justice, Andrew T. Ball, Jason K. Walleser, Kurtis Clark, Logan J. Tew, Scott T. Anderson, Scott Larish, Sheng Cheng, Taylor L. Giddens, Alla V. Sergueeva
  • Publication number: 20210229206
    Abstract: This disclosure relates to weldability of steel alloys that provide weld joints which retain hardness values in a heat affected zone adjacent to a fusion zone and which also have improved resistance to liquid metal embrittlement due to the presence of zinc coatings.
    Type: Application
    Filed: March 29, 2021
    Publication date: July 29, 2021
    Inventors: Daniel James Branagan, Alla V. Sergueeva, Brian E. Meacham, Andrew E. Frerichs, Sheng Cheng, Scott T. Larish, Grant G. Justice, Andrew T. Ball, Craig S. Parsons, Logan J. Tew, Scott T. Anderson, Kurtis R. Clark, Taylor L. Giddens, Tad V. Machrowicz, Jonathan M. Cischke
  • Patent number: 10975453
    Abstract: This disclosure is directed at methods for mechanical property improvement in a metallic alloy that has undergone one or more mechanical property losses as a consequence of forming an edge, such as in the formation of an internal hole or an external edge. Methods are disclosed that provide the ability to improve mechanical properties of metallic alloys that have been formed with one or more edges placed in the metallic alloy by a variety of methods which may otherwise serve as a limiting factor for industrial applications.
    Type: Grant
    Filed: July 26, 2019
    Date of Patent: April 13, 2021
    Assignee: United States Steel Corporation
    Inventors: Daniel James Branagan, Andrew E. Frerichs, Brian E. Meacham, Grant G. Justice, Andrew T. Ball, Jason K. Walleser, Kurtis Clark, Logan J. Tew, Scott T. Anderson, Scott Larish, Sheng Cheng, Taylor L. Giddens, Alla V. Sergueeva
  • Patent number: 10960487
    Abstract: This disclosure relates to weldability of steel alloys that provide weld joints which retain hardness values in a heat affected zone adjacent to a fusion zone and which also have improved resistance to liquid metal embrittlement due to the presence of zinc coatings.
    Type: Grant
    Filed: September 18, 2018
    Date of Patent: March 30, 2021
    Assignee: United States Steel Corporation
    Inventors: Daniel James Branagan, Alla V. Sergueeva, Brian E. Meacham, Andrew E. Frerichs, Sheng Cheng, Scott T. Larish, Grant G. Justice, Andrew T. Ball, Craig S. Parsons, Logan J. Tew, Scott T. Anderson, Kurtis R. Clark, Taylor L. Giddens, Tad V. Machrowicz, Jonathan M. Cischke
  • Patent number: 10480042
    Abstract: This disclosure is directed at methods for mechanical property improvement in a metallic alloy that has undergone one or more mechanical property losses as a consequence of shearing, such as in the formation of a sheared edge portion or a punched hole. Methods are disclosed that provide the ability to improve mechanical properties of metallic alloys that have been formed with one or more sheared edges which may otherwise serve as a limiting factor for industrial applications.
    Type: Grant
    Filed: April 8, 2016
    Date of Patent: November 19, 2019
    Assignee: The NanoSteel Company, Inc.
    Inventors: Daniel James Branagan, Andrew E. Frerichs, Brian E. Meacham, Grant G. Justice, Andrew T. Ball, Jason K. Walleser, Kurtis Clark, Logan J. Tew, Scott T. Anderson, Scott Larish, Sheng Cheng, Taylor L. Giddens, Alla V. Sergueeva
  • Patent number: 10465260
    Abstract: This disclosure is directed at methods for mechanical property improvement in a metallic alloy that has undergone one or more mechanical property losses as a consequence of forming an edge, such as in the formation of an internal hole or an external edge. Methods are disclosed that provide the ability to improve mechanical properties of metallic alloys that have been formed with one or more edges placed in the metallic alloy by a variety of methods which may otherwise serve as a limiting factor for industrial applications.
    Type: Grant
    Filed: February 21, 2017
    Date of Patent: November 5, 2019
    Assignee: The NanoSteel Company, Inc.
    Inventors: Daniel James Branagan, Andrew E. Frerichs, Brian E. Meacham, Grant G. Justice, Andrew T. Ball, Jason K. Walleser, Kurtis Clark, Logan J. Tew, Scott T. Anderson, Scott Larish, Sheng Cheng, Taylor L. Giddens, Alla V. Sergueeva
  • Patent number: 10378078
    Abstract: This invention relates to prevention of delayed cracking of metal alloys during drawing which may occur from hydrogen attack. The alloys find applications in parts or components used in vehicles, such as bodies in white, vehicular frames, chassis, or panels.
    Type: Grant
    Filed: December 27, 2016
    Date of Patent: August 13, 2019
    Assignee: The NanoSteel Company, Inc.
    Inventors: Daniel James Branagan, Andrew E. Frerichs, Brian E. Meacham, Grant G. Justice, Andrew T. Ball, Jason K. Walleser, Kurtis Clark, Logan J. Tew, Scott T. Anderson, Scott Larish, Sheng Cheng, Taylor L. Giddens, Alla V. Sergueeva
  • Patent number: 10233524
    Abstract: This disclosure deals with steel alloys containing mixed microconstituent structure that has the ability to provide ductility at tensile strength levels at or above 900 MPa. More specifically, the alloys contain Fe, B, Si and Mn and indicate tensile strengths of 900 MPa to 1820 MPa and elongations of 2.5% to 76.0%.
    Type: Grant
    Filed: September 24, 2015
    Date of Patent: March 19, 2019
    Assignee: The NanoSteel Company, Inc.
    Inventors: Daniel James Branagan, Grant G. Justice, Andrew T. Ball, Jason K. Walleser, Brian E. Meacham, Kurtis Clark, Logan J. Tew, Scott T. Anderson, Scott Larish, Sheng Cheng, Taylor L. Giddens, Andrew E. Frerichs, Alla V. Sergueeva
  • Publication number: 20180010204
    Abstract: This disclosure is related to high yield strength steel where yield strength can be increased without significantly affecting ultimate tensile strength (UTS) and in some cases, higher yield strength can be obtained without significant decrease in ultimate tensile strength and total elongation.
    Type: Application
    Filed: July 7, 2017
    Publication date: January 11, 2018
    Inventors: Daniel James Branagan, Andrew E. Frerichs, Brian E. Meacham, Jason K. Walleser, Andrew T. Ball, Grant G. Justice, Kurtis R. Clark, Sheng Cheng, Scott T. Anderson, Scott T. Larish, Taylor L. Giddens, Logan J. Tew, Alla V. Sergueeva
  • Patent number: 9284635
    Abstract: This disclosure deals with a class of metal alloys with advanced property combinations applicable to metallic sheet production. More specifically, the present application identifies the formation of metal alloys of relatively high strength and ductility and the use of one or more cycles of elevated temperature treatment and cold deformation to produce metallic sheet at reduced thickness with relatively high strength and ductility.
    Type: Grant
    Filed: December 18, 2014
    Date of Patent: March 15, 2016
    Assignee: The NanoSteel Company, Inc.
    Inventors: Daniel James Branagan, Grant G. Justice, Andrew T. Ball, Jason K. Walleser, Brian E. Meacham, Kurtis Clark, Longzhou Ma, Igor Yakubtsov, Scott Larish, Sheng Cheng, Taylor L. Giddens, Andrew E. Frerichs, Alla V. Sergueeva
  • Patent number: 9074273
    Abstract: The present disclosure is directed at metal alloys and methods of processing with application to slab casting methods and post-processing steps towards sheet production. The metals provide unique structure and exhibit advanced property combinations of high strength and/or high ductility.
    Type: Grant
    Filed: February 6, 2015
    Date of Patent: July 7, 2015
    Assignee: The NanoSteel Company, Inc.
    Inventors: Daniel James Branagan, Grant G. Justice, Andrew T. Ball, Jason K. Walleser, Brian E. Meacham, Kurtis Clark, Longzhou Ma, Igor Yakubtsov, Scott Larish, Sheng Cheng, Taylor L. Giddens, Andrew E. Frerichs, Alla V. Sergueeva
  • Publication number: 20120049129
    Abstract: A composite is provided having an electrically conducting Al matrix and elongated filaments comprising Ca and/or Sr and/or Ba disposed in the matrix and extending along a longitudinal axis of the composite. The filaments initially comprise Ca and/or Sr and/or Ba metal or alloy and then may be reacted with the Al matrix to form a strengthening intermetallic compound comprising Al and Ca and/or Sr and/or Ba. The composite is useful as a long-distance, high voltage power transmission conductor.
    Type: Application
    Filed: August 4, 2011
    Publication date: March 1, 2012
    Inventors: Alan M. Russell, Iver E. Anderson, Hyong J. Kim, Andrew E. Frerichs