Patents by Inventor Andrew E. Horch

Andrew E. Horch has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10529436
    Abstract: A one-time programmable memory device includes a first doped region in a semiconductor substrate, a second doped region implanted within the first doped region, and a gate positioned over the second doped region. The first doped region and second doped regions form a diode. A first contact is coupled to the first doped region for applying a voltage to the first doped region. The gate includes a dielectric portion that is capacitively coupled to the second doped region. The gate also includes a conductive portion that is coupled to a second contact for applying a voltage to the conductive portion. The voltage applied to the conductive portion is independent from the voltage applied to the first doped region. The memory device is programmed by forming a rupture in the dielectric portion of the gate.
    Type: Grant
    Filed: January 16, 2018
    Date of Patent: January 7, 2020
    Assignee: Synopsys, Inc.
    Inventors: Hrant Sargsyan, Andrew E. Horch
  • Patent number: 10468426
    Abstract: A nonvolatile memory (“NVM”) bitcell with one or more active regions capacitively coupled to the floating gate but that are separated from both the source and the drain. The inclusion of capacitors separated from the source and drain allows for improved control over the voltage of the floating gate. This in turn allows CHEI (or IHEI) to be performed with much higher efficiency than in existing bitcells, thereby the need for a charge pump to provide current to the bitcell, ultimately decreasing the total size of the bitcell. The bitcells may be constructed in pairs, further reducing the space requirements of the each bitcell, thereby mitigating the space requirements of the separate capacitor/s. The bitcell may also be operated by CHEI (or IHEI) and separately by BTBT depending upon the voltages applied at the source, drain, and capacitor/s.
    Type: Grant
    Filed: December 13, 2017
    Date of Patent: November 5, 2019
    Assignee: Synopsys, Inc.
    Inventor: Andrew E. Horch
  • Patent number: 10446562
    Abstract: An OTP memory device includes a first and a second doped region of the same polarity in a semiconductor substrate. The second doped region has a higher doping concentration than the first doped region. A drain region and a source region of an opposite polarity are also in the semiconductor substrate. The drain region is positioned over the first, higher doped region, and the drain is positioned over the second, lower doped region. The select device above the semiconductor substrate can form a channel in a channel region of the semiconductor substrate between the source region and the drain region. One portion of the select device is positioned over the first, lower doped region, and another portion of the select device is positioned over the second, higher doped region. An anti-fuse device is positioned above the second doped region and in part above a portion of the source region.
    Type: Grant
    Filed: December 22, 2017
    Date of Patent: October 15, 2019
    Assignee: Synopsys, Inc.
    Inventor: Andrew E. Horch
  • Patent number: 10395745
    Abstract: A one-time programmable memory device includes a well of a first polarity in a semiconductor substrate. A lightly-doped drain (LDD) region is above one portion of the well. The LDD region has a first doping concentration and a second polarity that is opposite the first polarity. A source region or a drain region of the second polarity is above another portion of the well. The source region or the drain region has a second doping concentration that is higher than the first doping concentration. A first breakdown voltage between the LDD region and the well region is higher than a second breakdown voltage between the source region or the drain region and the well region. A select device is positioned at least partially above a portion of the source region or the drain region. The select device is configured to form a channel between the source region or the drain region and the LDD region. An anti-fuse device is positioned at least partially above a portion of the LDD region.
    Type: Grant
    Filed: October 23, 2017
    Date of Patent: August 27, 2019
    Assignee: Synposys, Inc.
    Inventors: Andrew E. Horch, Martin Luc Cecil Arthur Niset, Ting-Jia Hu
  • Patent number: 10032784
    Abstract: An OTP memory device includes a first and a second doped region of the same polarity in a semiconductor substrate. The second doped region has a higher doping concentration than the first doped region. A source region and a drain region of an opposite polarity are also in the semiconductor substrate. The source is positioned over the lower doped region, and the drain is positioned over the higher doped region. A plurality of anti-fuse devices, separated from each other by a portion of the lower doped region, are each positioned at least partially above a respective portion of the source region (and, in turn, above the lower doped region). A first metal line is coupled to a first subset of the anti-fuse devices, and a second metal line is coupled to a different, second subset of the anti-fuse devices arranged between the anti-fuses in the first subset.
    Type: Grant
    Filed: July 27, 2017
    Date of Patent: July 24, 2018
    Assignee: Synopsys, Inc.
    Inventors: Andrew E. Horch, Martin L. Niset, Ting-Jia Hu
  • Publication number: 20180114582
    Abstract: A one-time programmable memory device includes a well of a first polarity in a semiconductor substrate. A lightly-doped drain (LDD) region is above one portion of the well. The LDD region has a first doping concentration and a second polarity that is opposite the first polarity. A source region or a drain region of the second polarity is above another portion of the well. The source region or the drain region has a second doping concentration that is higher than the first doping concentration. A first breakdown voltage between the LDD region and the well region is higher than a second breakdown voltage between the source region or the drain region and the well region. A select device is positioned at least partially above a portion of the source region or the drain region. The select device is configured to form a channel between the source region or the drain region and the LDD region. An anti-fuse device is positioned at least partially above a portion of the LDD region.
    Type: Application
    Filed: October 23, 2017
    Publication date: April 26, 2018
    Inventors: Andrew E. Horch, Martin Luc Cecil Arthur Niset, Ting-Jia Hu
  • Patent number: 9953990
    Abstract: Embodiments relate to an anti-fuse device with a transistor. The transistor may be a FinFET. The anti-fuse device includes a first electrode, an insulating layer, and a second electrode. The gate of the transistor may be formed in a same layer as the first electrode. The gate insulating layer on the gate of the transistor may be formed in a same layer as the insulating layer. The second electrode may be formed in a same layer as a local interconnect or a via and overlap the first electrode vertically over the insulating layer.
    Type: Grant
    Filed: August 1, 2017
    Date of Patent: April 24, 2018
    Assignee: Synopsys, Inc.
    Inventors: Andrew E. Horch, Victor Moroz, Jamil Kawa
  • Publication number: 20180108666
    Abstract: A nonvolatile memory (“NVM”) bitcell with one or more active regions capacitively coupled to the floating gate but that are separated from both the source and the drain. The inclusion of capacitors separated from the source and drain allows for improved control over the voltage of the floating gate. This in turn allows CHEI (or IHEI) to be performed with much higher efficiency than in existing bitcells, thereby the need for a charge pump to provide current to the bitcell, ultimately decreasing the total size of the bitcell. The bitcells may be constructed in pairs, further reducing the space requirements of the each bitcell, thereby mitigating the space requirements of the separate capacitor/s. The bitcell may also be operated by CHEI (or IHEI) and separately by BTBT depending upon the voltages applied at the source, drain, and capacitor/s.
    Type: Application
    Filed: December 13, 2017
    Publication date: April 19, 2018
    Inventor: Andrew E. Horch
  • Publication number: 20180033795
    Abstract: An OTP memory device includes a first and a second doped region of the same polarity in a semiconductor substrate. The second doped region has a higher doping concentration than the first doped region. A source region and a drain region of an opposite polarity are also in the semiconductor substrate. The source is positioned over the lower doped region, and the drain is positioned over the higher doped region. A plurality of anti-fuse devices, separated from each other by a portion of the lower doped region, are each positioned at least partially above a respective portion of the source region (and, in turn, above the lower doped region). A first metal line is coupled to a first subset of the anti-fuse devices, and a second metal line is coupled to a different, second subset of the anti-fuse devices arranged between the anti-fuses in the first subset.
    Type: Application
    Filed: July 27, 2017
    Publication date: February 1, 2018
    Inventors: Andrew E. Horch, Martin L. Niset, Ting-Jia Hu
  • Patent number: 9853036
    Abstract: A nonvolatile memory (“NVM”) bitcell with one or more active regions capacitively coupled to the floating gate but that are separated from both the source and the drain. The inclusion of capacitors separated from the source and drain allows for improved control over the voltage of the floating gate. This in turn allows CHEI (or IHEI) to be performed with much higher efficiency than in existing bitcells, thereby the need for a charge pump to provide current to the bitcell, ultimately decreasing the total size of the bitcell. The bitcells may be constructed in pairs, further reducing the space requirements of the each bitcell, thereby mitigating the space requirements of the separate capacitor/s. The bitcell may also be operated by CHEI (or IHEI) and separately by BTBT depending upon the voltages applied at the source, drain, and capacitor/s.
    Type: Grant
    Filed: September 17, 2014
    Date of Patent: December 26, 2017
    Assignee: Synopsys, Inc.
    Inventor: Andrew E. Horch
  • Patent number: 9553207
    Abstract: A nonvolatile memory (“NVM”) bitcell includes a capacitor, a transistor, and a tunneling device. The capacitor, transistor, and tunneling device are each electrically coupled to different active regions and metal contacts. The three devices are coupled by a floating gate that traverses the three active regions. The tunneling device is used to program and erase the device, allowing for faster page erasure, and thus allows for rapid testing and verification of functionality. The transistor is used to read the logical state of the floating gate. The capacitor and floating gate are capacitively coupled together, removing the need for a separate selection device to perform read, write, and/or erase operations.
    Type: Grant
    Filed: September 25, 2013
    Date of Patent: January 24, 2017
    Assignee: Synopsys, Inc.
    Inventors: Andrew E. Horch, Troy N. Gilliland
  • Patent number: 9520404
    Abstract: A nonvolatile memory (“NVM”) bitcell includes a capacitor, an asymmetrically doped transistor, and a tunneling device. The capacitor, transistor, and tunneling device are each electrically coupled to different active regions and metal contacts. The three devices are coupled by a floating gate that traverses the three active regions. The tunneling device is formed in a native region to allow for greater dynamic range in the voltage used to induce tunneling. The FN tunneling device is used to erase the device, allowing for faster page erasure, and thus allows for rapid testing and verification of functionality. The asymmetric transistor, in conjunction with the capacitor, is used to both program and read the logical state of the floating gate. The capacitor and floating gate are capacitively coupled together, removing the need for a separate selection device to perform read and write operations.
    Type: Grant
    Filed: July 30, 2013
    Date of Patent: December 13, 2016
    Assignee: Synopsys, Inc.
    Inventor: Andrew E. Horch
  • Patent number: 9508868
    Abstract: A nonvolatile memory (“NVM”) bitcell with one or more active regions capacitively coupled to the floating gate but that are separated from both the source and the drain. The inclusion of capacitors separated from the source and drain allows for improved control over the voltage of the floating gate. This in turn allows CHEI (or IHEI) to be performed with much higher efficiency than in existing bitcells, thereby the need for a charge pump to provide current to the bitcell, ultimately decreasing the total size of the bitcell. The bitcells may be constructed in pairs, further reducing the space requirements of the each bitcell, thereby mitigating the space requirements of the separate capacitor/s. The bitcell may also be operated by CHEI (or IHEI) and separately by BTBT depending upon the voltages applied at the source, drain, and capacitor/s.
    Type: Grant
    Filed: January 29, 2014
    Date of Patent: November 29, 2016
    Assignee: Synopsys, Inc.
    Inventor: Andrew E. Horch
  • Patent number: 9406812
    Abstract: A nonvolatile memory (“NVM”) bitcell includes a source and a drain formed in an active region of a substrate and separated by a channel region in the active region. A gate stack formed over the substrate includes a gate formed on an oxide and at least one sidewall spacer formed around the gate. A charge trapping layer is formed on an opposite side of the sidewall spacer from the gate, where at least a portion of the charge trapping layer acts as a floating gate for the bitcell. The bitcell further includes a salicide block covering the floating gate portion of the charge trapping layer. An contact (sometimes referred to as a bar contact) physically contacts the salicide block above the floating gate portion of the charge trapping layer.
    Type: Grant
    Filed: January 12, 2015
    Date of Patent: August 2, 2016
    Assignee: Synopsys, Inc.
    Inventors: Andrew E. Horch, Martin Luc Cecil Arthur Niset
  • Publication number: 20160204279
    Abstract: A nonvolatile memory (“NVM”) bitcell includes a source and a drain formed in an active region of a substrate and separated by a channel region in the active region. A gate stack formed over the substrate includes a gate formed on an oxide and at least one sidewall spacer formed around the gate. A charge trapping layer is formed on an opposite side of the sidewall spacer from the gate, where at least a portion of the charge trapping layer acts as a floating gate for the bitcell. The bitcell further includes a salicide block covering the floating gate portion of the charge trapping layer. An contact (sometimes referred to as a bar contact) physically contacts the salicide block above the floating gate portion of the charge trapping layer.
    Type: Application
    Filed: January 12, 2015
    Publication date: July 14, 2016
    Inventors: Andrew E. Horch, Martin Luc Cecil Arthur Niset
  • Patent number: 9355728
    Abstract: An asymmetric non-volatile memory bitcell is described. The bitcell comprises source and drain regions comprising carriers of the same conductivity type. A floating gate rests on top of the well, and extends over a channel region, and at least a portion of the source and drain regions. The drain region comprises additional carriers of a second conductivity type, allowing band to band tunneling. The source region comprises additional carriers of a first conductivity type, thereby increasing source-gate capacitance. Thus, the bitcell incorporates a select device, thereby decreasing the overall size of the bitcell. The bitcell may be created without any additional CMOS process steps, or through the addition of a single extra mask step.
    Type: Grant
    Filed: November 1, 2013
    Date of Patent: May 31, 2016
    Assignee: Synopsys, Inc.
    Inventor: Andrew E. Horch
  • Patent number: 9001580
    Abstract: A nonvolatile memory (“NVM”) bitcell includes a capacitor, an asymmetrically doped transistor, and a gated diode device. The capacitor, transistor, and gated diode device are each electrically coupled to different active regions and metal contacts. The three devices are coupled by a floating gate that traverses the three active regions. The gated diode device allows for erasure of an entire NVM memory more efficiently and using less substrate space than a similar device that uses a transistor. The asymmetric transistor, in conjunction with the capacitor, is used to both program and read the logical state of the floating gate. The capacitor and floating gate are capacitively coupled together, removing the need for a separate selection device to perform read and write operations.
    Type: Grant
    Filed: December 4, 2013
    Date of Patent: April 7, 2015
    Assignee: Synopsys, Inc.
    Inventor: Andrew E. Horch
  • Publication number: 20150085585
    Abstract: A nonvolatile memory (“NVM”) bitcell includes a capacitor, a transistor, and a tunneling device. The capacitor, transistor, and tunneling device are each electrically coupled to different active regions and metal contacts. The three devices are coupled by a floating gate that traverses the three active regions. The tunneling device is used to program and erase the device, allowing for faster page erasure, and thus allows for rapid testing and verification of functionality. The transistor is used to read the logical state of the floating gate. The capacitor and floating gate are capacitively coupled together, removing the need for a separate selection device to perform read, write, and/or erase operations.
    Type: Application
    Filed: September 25, 2013
    Publication date: March 26, 2015
    Applicant: Synopsys, Inc.
    Inventors: Andrew E. Horch, Troy N. Gilliland
  • Publication number: 20150034909
    Abstract: A nonvolatile memory (“NVM”) bitcell includes a capacitor, an asymmetrically doped transistor, and a tunneling device. The capacitor, transistor, and tunneling device are each electrically coupled to different active regions and metal contacts. The three devices are coupled by a floating gate that traverses the three active regions. The tunneling device is formed in a native region to allow for greater dynamic range in the voltage used to induce tunneling. The FN tunneling device is used to erase the device, allowing for faster page erasure, and thus allows for rapid testing and verification of functionality. The asymmetric transistor, in conjunction with the capacitor, is used to both program and read the logical state of the floating gate. The capacitor and floating gate are capacitively coupled together, removing the need for a separate selection device to perform read and write operations.
    Type: Application
    Filed: July 30, 2013
    Publication date: February 5, 2015
    Applicant: Synopsys, Inc.
    Inventor: Andrew E. Horch
  • Publication number: 20150001603
    Abstract: A nonvolatile memory (“NVM”) bitcell with one or more active regions capacitively coupled to the floating gate but that are separated from both the source and the drain. The inclusion of capacitors separated from the source and drain allows for improved control over the voltage of the floating gate. This in turn allows CHEI (or IHEI) to be performed with much higher efficiency than in existing bitcells, thereby the need for a charge pump to provide current to the bitcell, ultimately decreasing the total size of the bitcell. The bitcells may be constructed in pairs, further reducing the space requirements of the each bitcell, thereby mitigating the space requirements of the separate capacitor/s. The bitcell may also be operated by CHEI (or IHEI) and separately by BTBT depending upon the voltages applied at the source, drain, and capacitor/s.
    Type: Application
    Filed: September 17, 2014
    Publication date: January 1, 2015
    Inventor: Andrew E. Horch