Patents by Inventor Andrew Edmonds

Andrew Edmonds has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11544743
    Abstract: Application personalization techniques and systems are described that leverage an embedded machine learning module to preserve a user's privacy while still supporting rich personalization with improved accuracy and efficiency of use of computational resources over conventional techniques and systems. The machine learning module, for instance, may be embedded as part of an application to execute within a context of the application to learn user preferences to train a model using machine learning. This model is then used within the context of execution of the application to personalize the application, such as control access to digital content, make recommendations, control which items of digital marketing content are exposed to a user via the application, and so on.
    Type: Grant
    Filed: October 16, 2017
    Date of Patent: January 3, 2023
    Assignee: Adobe Inc.
    Inventors: Thomas William Randall Jacobs, Peter Raymond Fransen, Kevin Gary Smith, Kent Andrew Edmonds, Jen-Chan Jeff Chien, Gavin Stuart Peter Miller
  • Patent number: 11544322
    Abstract: A method includes detecting control of an active content creation tool of an interactive computing system in response to a user input received at a user interface of the interactive computing system. The method also includes automatically updating a video search query based on the detected control of the active content creation tool to include context information about the active content creation tool. Further, the method includes performing a video search of video captions from a video database using the video search query and providing search results of the video search to the user interface of the interactive computing system.
    Type: Grant
    Filed: April 19, 2019
    Date of Patent: January 3, 2023
    Assignees: Adobe Inc., The Regents of the University of California
    Inventors: Lubomira Dontcheva, Kent Andrew Edmonds, Cristin Fraser, Scott Klemmer
  • Patent number: 11521864
    Abstract: A system and method of using electrochemical additive manufacturing to add interconnection features, such as wafer bumps or pillars, or similar structures like heatsinks, to a plate such as a silicon wafer. The plate may be coupled to a cathode, and material for the features may be deposited onto the plate by transmitting current from an anode array through an electrolyte to the cathode. Position actuators and sensors may control the position and orientation of the plate and the anode array to place features in precise positions. Use of electrochemical additive manufacturing may enable construction of features that cannot be created using current photoresist-based methods. For example, pillars may be taller and more closely spaced, with heights of 200 ?m or more, diameters of 10 ?m or below, and inter-pillar spacing below 20 ?m. Features may also extend horizontally instead of only vertically, enabling routing of interconnections to desired locations.
    Type: Grant
    Filed: November 24, 2021
    Date of Patent: December 6, 2022
    Assignee: FABRIC8LABS, INC.
    Inventors: David Pain, Andrew Edmonds, Jeffrey Herman, Charles Pateros, Kareemullah Shaik
  • Patent number: 11512404
    Abstract: Printhead for a 3D manufacturing system that uses metal electrodeposition to construct parts; embodiments utilize a grid of anodes to achieve high quality parts with features that may be small and detailed. To support grids with thousands or millions of anodes, the printhead may use matrix control with row and column drivers similar to display backplanes. Unlike display backplanes where the design goal is to display images using minimal current, the printhead may be optimized for high current density for fast electrodeposition, and for anode longevity. Current density may exceed 1000 mA per cm-squared, at least an order of magnitude greater than that of display backplanes. Anode longevity may be enhanced by using relatively large anodes compared to the grid pitch of the printhead, by lengthening the conductive paths through anodes, or both. Embodiments may be constructed by adding anode and insulation layers on top of matrix-controlled switching circuits.
    Type: Grant
    Filed: December 30, 2021
    Date of Patent: November 29, 2022
    Assignee: FABRIC8LABS, INC.
    Inventors: David Pain, Andrew Edmonds, Jeffrey Herman, Charles Pateros, David Wirth, Kareemullah Shaik
  • Publication number: 20220349046
    Abstract: Process for manufacturing a printhead for a 3D manufacturing system that uses metal electrodeposition to construct parts. The printhead may be constructed by depositing layers on top of a backplane that contains control and power circuits. Deposited layers may include insulating layers and an anode layer that contain deposition anodes that are in contact with the electrolyte to drive electrodeposition. Insulating layers may for example be constructed of silicon nitride or silicon dioxide; the anode layer may contain an insoluble conductive material such as platinum group metals and their associated oxides, highly doped semiconducting materials, and carbon based conductors. The anode layer may be deposited using chemical vapor deposition or physical vapor deposition. Alternatively in one or more embodiments the printhead may be constructed by manufacturing a separate anode plane component, and then bonding the anode plane to the backplane.
    Type: Application
    Filed: July 12, 2022
    Publication date: November 3, 2022
    Inventors: David Pain, Andrew Edmonds, Jeffrey Herman, Charles Pateros, Kareemullah Shaik, Edward White
  • Patent number: 11429892
    Abstract: Systems and methods provide a recommendation system for recommending sequential content. The training of a reinforcement learning (RL) agent is bootstrapped from passive data. The RL agent of the sequential recommendations system is trained using the passive data over a number of epochs involving interactions between the sequential recommendation system and user devices. At each epoch, available active data from previous epochs is obtained, and transition probabilities are generated from the passive data and at least one parameter derived from the currently available active data. Recommended content is selected based on a current state and the generated transition probabilities, and the active data is updated from the current epoch based on the recommended content and a resulting new state. A clustering approach can also be employed when deriving parameters from active data to balance model expressiveness and data sparsity.
    Type: Grant
    Filed: March 23, 2018
    Date of Patent: August 30, 2022
    Assignee: ADOBE INC.
    Inventors: Sorathan Chaturapruek, Georgios Theocharous, Kent Andrew Edmonds
  • Patent number: 11401603
    Abstract: 3D metal printhead assembly method of manufacture that uses metal electrodeposition to construct parts. The printhead may be constructed by depositing layers on top of a backplane that contains control and power circuits. Deposited layers may include insulating layers and an anode layer that contain deposition anodes that are in contact with the electrolyte to drive electrodeposition. Insulating layers may for example be constructed of silicon nitride or silicon dioxide; the anode layer may contain an insoluble conductive material such as platinum group metals and their associated oxides, highly doped semiconducting materials, and carbon based conductors. The anode layer may be deposited using chemical vapor deposition or physical vapor deposition. Alternatively in one or more embodiments the printhead may be constructed by manufacturing a separate anode plane component, and then bonding the anode plane to the backplane.
    Type: Grant
    Filed: November 16, 2020
    Date of Patent: August 2, 2022
    Assignee: FABRIC8LABS, INC.
    Inventors: David Pain, Andrew Edmonds, Jeffrey Herman, Charles Pateros, Kareemullah Shaik, Edward White
  • Patent number: 11361018
    Abstract: Systems and methods for searching digital content are disclosed. A method includes receiving, from a user, a base search constraint. A search constraint includes search values or criteria. A recall set is generated based on the base search constraint. Recommended search constraints are determined and provided to the user. The recommended search constraints are statistically associated with the base search constraint. The method receives, from the user, a selection of a first search constraint included in the plurality of recommend search constraints. The method generates and provides search results to the user that include a re-ordering of the recall set. The re-ordering is based on a search constraint set that includes both the base search constraint and the selected first search constraint. The re-ordering is further based on a weight associated with the base search constraint and another user-provided weight associated with the first search constraint.
    Type: Grant
    Filed: November 28, 2017
    Date of Patent: June 14, 2022
    Assignee: Adobe Inc.
    Inventors: Samarth Gulati, Brett Michael Butterfield, Baldo Faieta, Kent Andrew Edmonds
  • Publication number: 20220162765
    Abstract: Printhead for a 3D manufacturing system that uses metal electrodeposition to construct parts; embodiments utilize a grid of anodes to achieve high quality parts with features that may be small and detailed. To support grids with thousands or millions of anodes, the printhead may use matrix control with row and column drivers similar to display backplanes. Unlike display backplanes where the design goal is to display images using minimal current, the printhead may be optimized for high current density for fast electrodeposition, and for anode longevity. Current density may exceed 1000 mA per cm-squared, at least an order of magnitude greater than that of display backplanes. Anode longevity may be enhanced by using relatively large anodes compared to the grid pitch of the printhead, by lengthening the conductive paths through anodes, or both. Embodiments may be constructed by adding anode and insulation layers on top of matrix-controlled switching circuits.
    Type: Application
    Filed: December 30, 2021
    Publication date: May 26, 2022
    Inventors: David Pain, Andrew Edmonds, Jeffrey Herman, Charles Pateros, David Wirth
  • Patent number: 11313036
    Abstract: Process for manufacturing a printhead for a 3D manufacturing system that uses metal electrodeposition to construct parts. The printhead may be constructed by depositing layers on top of a backplane that contains control and power circuits. Deposited layers may include insulating layers and an anode layer that contain deposition anodes that are in contact with the electrolyte to drive electrodeposition. Insulating layers may for example be constructed of silicon nitride or silicon dioxide; the anode layer may contain an insoluble conductive material such as platinum group metals and their associated oxides, highly doped semiconducting materials, and carbon based conductors. The anode layer may be deposited using chemical vapor deposition or physical vapor deposition. Alternatively in one or more embodiments the printhead may be constructed by manufacturing a separate anode plane component, and then bonding the anode plane to the backplane.
    Type: Grant
    Filed: November 24, 2021
    Date of Patent: April 26, 2022
    Assignee: FABRIC8LABS, INC.
    Inventors: David Pain, Andrew Edmonds, Jeffrey Herman, Charles Pateros, Edward White
  • Patent number: 11313035
    Abstract: Process for manufacturing a printhead for a 3D manufacturing system that uses metal electrodeposition to construct parts. The printhead may be constructed by depositing layers on top of a backplane that contains control and power circuits. Deposited layers may include insulating layers and an anode layer that contain deposition anodes that are in contact with the electrolyte to drive electrodeposition. Insulating layers may for example be constructed of silicon nitride or silicon dioxide; the anode layer may contain an insoluble conductive material such as platinum group metals and their associated oxides, highly doped semiconducting materials, and carbon based conductors. The anode layer may be deposited using chemical vapor deposition or physical vapor deposition. Alternatively in one or more embodiments the printhead may be constructed by manufacturing a separate anode plane component, and then bonding the anode plane to the backplane.
    Type: Grant
    Filed: November 24, 2021
    Date of Patent: April 26, 2022
    Assignee: FABRIC8LABS, INC.
    Inventors: David Pain, Andrew Edmonds, Jeffrey Herman, Charles Pateros, David Wirth
  • Publication number: 20220081761
    Abstract: Process for manufacturing a printhead for a 3D manufacturing system that uses metal electrodeposition to construct parts. The printhead may be constructed by depositing layers on top of a backplane that contains control and power circuits. Deposited layers may include insulating layers and an anode layer that contain deposition anodes that are in contact with the electrolyte to drive electrodeposition. Insulating layers may for example be constructed of silicon nitride or silicon dioxide; the anode layer may contain an insoluble conductive material such as platinum group metals and their associated oxides, highly doped semiconducting materials, and carbon based conductors. The anode layer may be deposited using chemical vapor deposition or physical vapor deposition. Alternatively in one or more embodiments the printhead may be constructed by manufacturing a separate anode plane component, and then bonding the anode plane to the backplane.
    Type: Application
    Filed: November 24, 2021
    Publication date: March 17, 2022
    Inventors: David Pain, Andrew Edmonds, Jeffrey Herman, Charles Pateros, Edward White
  • Publication number: 20220081760
    Abstract: Process for manufacturing a printhead for a 3D manufacturing system that uses metal electrodeposition to construct parts. The printhead may be constructed by depositing layers on top of a backplane that contains control and power circuits. Deposited layers may include insulating layers and an anode layer that contain deposition anodes that are in contact with the electrolyte to drive electrodeposition. Insulating layers may for example be constructed of silicon nitride or silicon dioxide; the anode layer may contain an insoluble conductive material such as platinum group metals and their associated oxides, highly doped semiconducting materials, and carbon based conductors. The anode layer may be deposited using chemical vapor deposition or physical vapor deposition. Alternatively in one or more embodiments the printhead may be constructed by manufacturing a separate anode plane component, and then bonding the anode plane to the backplane.
    Type: Application
    Filed: November 24, 2021
    Publication date: March 17, 2022
    Inventors: David Pain, Andrew Edmonds, Jeffrey Herman, Charles Pateros, David Wirth
  • Publication number: 20220084840
    Abstract: A system and method of using electrochemical additive manufacturing to add interconnection features, such as wafer bumps or pillars, or similar structures like heatsinks, to a plate such as a silicon wafer. The plate may be coupled to a cathode, and material for the features may be deposited onto the plate by transmitting current from an anode array through an electrolyte to the cathode. Position actuators and sensors may control the position and orientation of the plate and the anode array to place features in precise positions. Use of electrochemical additive manufacturing may enable construction of features that cannot be created using current photoresist-based methods. For example, pillars may be taller and more closely spaced, with heights of 200 ?m or more, diameters of 10 ?m or below, and inter-pillar spacing below 20 ?m. Features may also extend horizontally instead of only vertically, enabling routing of interconnections to desired locations.
    Type: Application
    Filed: November 24, 2021
    Publication date: March 17, 2022
    Inventors: David Pain, Andrew Edmonds, Jeffrey Herman, Charles Pateros, Kareemullah Shaik
  • Patent number: 11243747
    Abstract: Application personalization techniques and systems are described that leverage an embedded machine learning module to preserve a user's privacy while still supporting rich personalization with improved accuracy and efficiency of use of computational resources over conventional techniques and systems. The machine learning module, for instance, may be embedded as part of an application to execute within a context of the application to learn user preferences to train a model using machine learning. This model is then used within the context of execution of the application to personalize the application, such as control access to digital content, make recommendations, control which items of digital marketing content are exposed to a user via the application, and so on.
    Type: Grant
    Filed: August 31, 2020
    Date of Patent: February 8, 2022
    Assignee: Adobe Inc.
    Inventors: Thomas William Randall Jacobs, Peter Raymond Fransen, Kevin Gary Smith, Kent Andrew Edmonds, Jen-Chan Jeff Chien, Gavin Stuart Peter Miller
  • Patent number: 11232956
    Abstract: A system and method of using electrochemical additive manufacturing to add interconnection features, such as wafer bumps or pillars, or similar structures like heatsinks, to a plate such as a silicon wafer. The plate may be coupled to a cathode, and material for the features may be deposited onto the plate by transmitting current from an anode array through an electrolyte to the cathode. Position actuators and sensors may control the position and orientation of the plate and the anode array to place features in precise positions. Use of electrochemical additive manufacturing may enable construction of features that cannot be created using current photoresist-based methods. For example, pillars may be taller and more closely spaced, with heights of 200 ?m or more, diameters of 10 ?m or below, and inter-pillar spacing below 20 ?m. Features may also extend horizontally instead of only vertically, enabling routing of interconnections to desired locations.
    Type: Grant
    Filed: December 4, 2020
    Date of Patent: January 25, 2022
    Assignee: FABRIC8LABS, INC.
    Inventors: David Pain, Andrew Edmonds, Jeffrey Herman, Charles Pateros, Kareemullah Shaik
  • Publication number: 20220019412
    Abstract: Application personalization techniques and systems are described that leverage an embedded machine learning module to preserve a user's privacy while still supporting rich personalization with improved accuracy and efficiency of use of computational resources over conventional techniques and systems. The machine learning module, for instance, may be embedded as part of an application to execute within a context of the application to learn user preferences to train a model using machine learning. This model is then used within the context of execution of the application to personalize the application, such as control access to digital content, make recommendations, control which items of digital marketing content are exposed to a user via the application, and so on.
    Type: Application
    Filed: September 30, 2021
    Publication date: January 20, 2022
    Applicant: Adobe Inc.
    Inventors: Thomas William Randall Jacobs, Peter Raymond Fransen, Kevin Gary Smith, Kent Andrew Edmonds, Jen-Chan Jeff Chien, Gavin Stuart Peter Miller
  • Patent number: 11132349
    Abstract: An update basis for updating digital content in a digital medium environment is described. The digital content is updated by incorporating new digital content components from a service provider system, such as a stock content service, to keep the digital content from seeming stale to client device users. The service provider system controls provision of digital content components according to an update basis described in a component request. In part, component requests ask that the service provider system provide digital content components for incorporation with digital content. Component requests also describe a timing basis with which digital content components are to be provided as updates. By way of example, the timing basis may correspond to a time interval (e.g., daily, weekly, monthly, seasonally, times of day, and so on), receiving user input in relation to the digital content (e.g., a navigation input to a web page), and so forth.
    Type: Grant
    Filed: March 23, 2020
    Date of Patent: September 28, 2021
    Assignee: Adobe Inc.
    Inventors: Gavin Stuart Peter Miller, Kevin Gary Smith, Kent Andrew Edmonds, Govind P. Balakrishnan
  • Patent number: 11030236
    Abstract: Systems and methods for searching digital content, such as digital images, are disclosed. A method includes receiving a first search constraint and generating search results based on the first search constraint. A search constraint includes search values or criteria. The search results include a ranked set of digital images. A second search constraint and a weight value associated with the second search constraint are received. The search results are updated based on the second search constraint and the weight value. The updated search results are provided to a user. Updating the search results includes determining a ranking (or a re-ranking) for each item of content included in the search results based on the first search constraint, the second search constraint, and the weight value. Re-ranking the search results may further be based on a weight value associated with the first search constraint, such as a default or maximum weight value.
    Type: Grant
    Filed: November 28, 2017
    Date of Patent: June 8, 2021
    Assignee: Adobe Inc.
    Inventors: Samarth Gulati, Brett Butterfield, Baldo Faieta, Bernard James Kerr, Kent Andrew Edmonds
  • Publication number: 20210102286
    Abstract: 3D metal printhead assembly method of manufacture that uses metal electrodeposition to construct parts. The printhead may be constructed by depositing layers on top of a backplane that contains control and power circuits. Deposited layers may include insulating layers and an anode layer that contain deposition anodes that are in contact with the electrolyte to drive electrodeposition. Insulating layers may for example be constructed of silicon nitride or silicon dioxide; the anode layer may contain an insoluble conductive material such as platinum group metals and their associated oxides, highly doped semiconducting materials, and carbon based conductors. The anode layer may be deposited using chemical vapor deposition or physical vapor deposition. Alternatively in one or more embodiments the printhead may be constructed by manufacturing a separate anode plane component, and then bonding the anode plane to the backplane.
    Type: Application
    Filed: November 16, 2020
    Publication date: April 8, 2021
    Applicant: FABRIC8LABS, INC.
    Inventors: David PAIN, Andrew EDMONDS, Jeffrey HERMAN, Charles PATEROS, Kareemullah SHAIK, Edward WHITE