Patents by Inventor Andrew Ellington

Andrew Ellington has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240093285
    Abstract: Disclosed herein is a method of utilizing an enzyme in a nucleic acid manipulation process, the method comprising: a) transforming a microorganism with a non-native enzyme; b) inducing expression of the enzyme in the microorganism, thereby producing the non-native enzyme; c) adding the microorganism of step b) directly to a non-naturally occurring nucleic acid manipulation process, wherein the non-native enzyme is not purified from the microorganism prior to addition to the nucleic acid manipulation process; and carrying out the nucleic acid manipulation process using the enzyme. Importantly, this method can be carried out without the need to purify the enzyme from the cell producing it before it is used in the nucleic acid manipulation method. Also disclosed herein is a kit for carrying out a nucleic acid manipulation process, the kit comprising a) a microorganism expressing a non-native enzyme; b) nucleic acids of interest; and c) reagents for use in the nucleic acid manipulation process.
    Type: Application
    Filed: October 3, 2023
    Publication date: March 21, 2024
    Inventors: Andrew ELLINGTON, Sanchita BHADRA, Jared ELLEFSON, Jimmy GOLLIHAR, Arti POTHUKUCHY, Michelle BYROM, Raghav SHROFF
  • Patent number: 11912991
    Abstract: Embodiments of the disclosure concern methods and compositions related to generation and/or use of proofreading reverse transcriptases, including those that are thermophilic or hyperthermophilic. The disclosure encompasses specific recombinant polymerases and their use. In some embodiments, the polymerases are utilized for RNA sequencing in the absence of generation of a cDNA intermediate.
    Type: Grant
    Filed: November 13, 2020
    Date of Patent: February 27, 2024
    Assignee: BOARD OF REGENTS, THE UNIVERSITY OF TEXAS SYSTEM
    Inventors: Andrew Ellington, Jared Ellefson, Jimmy Gollihar
  • Publication number: 20240043909
    Abstract: Disclosed herein are methods and platforms using Receptor Compartmentalized Partnered Replication (CPR), in which the partner gene is a receptor, signal transduction pathway, or metabolic pathway that leads to the production of an effector molecule for the receptor or signal transduction pathway. The signal transduction pathway or receptor is coupled to the production of a thermostable polymerase. Emulsification of libraries of organisms with primers that can amplify the partner gene led to the selective amplification of those partner genes that were best able to produce the thermostable polymerase during thermal cycling of the emulsion.
    Type: Application
    Filed: June 29, 2023
    Publication date: February 8, 2024
    Inventors: Andrew ELLINGTON, Jimmy GOLLIHAR, Katy KAO, Elizabeth GARDNER
  • Publication number: 20240011000
    Abstract: Disclosed are recombinant fusion proteins comprising a villin headpiece HP47 domain and a heterologous protein domain, such as, for example, a nucleic acid polymerase. Also disclosed are nucleic acids (e.g., DNA constructs) encoding the fusion protein, expression vectors and recombinant host cells for expression of the fusion protein, and methods of using the recombinant fusion proteins.
    Type: Application
    Filed: September 15, 2021
    Publication date: January 11, 2024
    Inventors: Andrew ELLINGTON, Inyup PAIK, Andre MARANHAO, Sanchita BHADRA, David WALKER, Phuoc NGO, Daniel DIAZ
  • Patent number: 11851699
    Abstract: Disclosed are methods for isothermal nucleic acid amplification and detection.
    Type: Grant
    Filed: February 5, 2021
    Date of Patent: December 26, 2023
    Assignee: Board of Regents, The University of Texas System
    Inventors: Andrew Ellington, Yu Sherry Jiang, Sanchita Bhadra, Bingling Li, Randy Allen Hughes, Yan Du, Jimmy Gollihar
  • Patent number: 11807901
    Abstract: Disclosed herein is a method of utilizing an enzyme in a nucleic acid manipulation process, the method comprising: a) transforming a microorganism with a non-native enzyme; b) inducing expression of the enzyme in the microorganism, thereby producing the non-native enzyme; c) adding the microorganism of step b) directly to a non-naturally occurring nucleic acid manipulation process, wherein the non-native enzyme is not purified from the microorganism prior to addition to the nucleic acid manipulation process; and carrying out the nucleic acid manipulation process using the enzyme. Importantly, this method can be carried out without the need to purify the enzyme from the cell producing it before it is used in the nucleic acid manipulation method. Also disclosed herein is a kit for carrying out a nucleic acid manipulation process, the kit comprising a) a microorganism expressing a non-native enzyme; b) nucleic acids of interest; and c) reagents for use in the nucleic acid manipulation process.
    Type: Grant
    Filed: November 15, 2018
    Date of Patent: November 7, 2023
    Assignee: BOARD OF REGENTS, THE UNIVERSITY OF TEXAS SYSTEM
    Inventors: Andrew Ellington, Sanchita Bhadra, Jared Ellefson, Jimmy Gollihar, Arti Pothukuchy, Michelle Byrom, Raghav Shroff
  • Publication number: 20230295706
    Abstract: Aspects of the disclosure relate to compositions and methods for amplifying and/or detecting one or more target nucleic acid sequences (e.g., a nucleic acid sequence of one or more pathogens) in a biological sample obtained from a subject. In some embodiments, the pathogens are viral, bacterial, fungal, parasitic, or protozoan pathogens, such as SARS-CoV-2 or an influenza virus. In some embodiments, the methods comprise isothermal amplification of a target nucleic acid and subsequent detection of the amplification products.
    Type: Application
    Filed: January 12, 2023
    Publication date: September 21, 2023
    Applicants: Detect, Inc., Board of Regents, The University of Texas System
    Inventors: Spencer Glantz, Jonathan M. Rothberg, Xinghua Shi, Benjamin Rosenbluth, Jaymin Patel, William A. Hansen, Jonathan Naccache, Hope Kronman, Henry Kemble, Caixia Lv, Andrew Ellington, Sanchita Bhadra
  • Patent number: 11746374
    Abstract: Disclosed herein are methods and platforms using Receptor Compartmentalized Partnered Replication (CPR), in which the partner gene is a receptor, signal transduction pathway, or metabolic pathway that leads to the production of an effector molecule for the receptor or signal transduction pathway. The signal transduction pathway or receptor is coupled to the production of a thermostable polymerase. Emulsification of libraries of organisms with primers that can amplify the partner gene led to the selective amplification of those partner genes that were best able to produce the thermostable polymerase during thermal cycling of the emulsion.
    Type: Grant
    Filed: June 15, 2018
    Date of Patent: September 5, 2023
    Assignees: BOARD OF REGENTS, THE UNIVERSITY OF TEXAS SYSTEM, THE TEXAS A&M UNIVERSITY
    Inventors: Andrew Ellington, Jimmy Gollihar, Katy Kao, Elizabeth Gardner
  • Publication number: 20230107647
    Abstract: Identifying proteins and peptides, and more specifically large-scale sequencing of single peptides in a mixture of diverse peptides at the single molecule level is an unmet challenge in the field of protein sequencing. Herein are methods for identifying amino acids in peptides, including peptides comprising unnatural amino acids. In one embodiment, the N-terminal amino acid is labeled with a first label and an internal amino acid is labeled with a second label. In some embodiments, the labels are fluorescent labels. In other embodiments, the internal amino acid is Lysine. In other embodiments, amino acids in peptides are identified based on the fluorescent signature for each peptide at the single molecule level.
    Type: Application
    Filed: July 7, 2022
    Publication date: April 6, 2023
    Applicant: BOARD OF REGENTS, THE UNIVERSITY OF TEXAS SYSTEM
    Inventors: Edward MARCOTTE, Eric V. ANSLYN, Andrew ELLINGTON, Jagannath SWAMINATHAN
  • Patent number: 11551786
    Abstract: A computer-implemented method of training a neural network to improve a characteristic of a protein comprises collecting a set of amino acid sequences from a database, compiling each amino acid sequence into a three-dimensional crystallographic structure of a folded protein, training a neural network with a subset of the three-dimensional crystallographic structures, identifying, with the neural network, a candidate residue to mutate in a target protein, and identifying, with the neural network, a predicted amino acid residue to substitute for the candidate residue, to produce a mutated protein, wherein the mutated protein demonstrates an improvement in a characteristic over the target protein. A system for improving a characteristic of a protein is also described. Improved blue fluorescent proteins generated using the system are also described.
    Type: Grant
    Filed: October 27, 2021
    Date of Patent: January 10, 2023
    Assignee: Board of Regents, The University of Texas System
    Inventors: Andrew Ellington, Austin Cole, Raghav Shroff, Ross Thyer
  • Publication number: 20220316001
    Abstract: Disclosed are compositions and methods for nucleic acid amplification and detection. Specifically, disclosed herein are compositions and methods that allow for amplification of nucleic acids at a wide variety of temperatures. This includes a polymerase which is thermostable at high temperatures, and a method of amplification that can be conducted at relatively low temperatures.
    Type: Application
    Filed: January 19, 2022
    Publication date: October 6, 2022
    Inventors: Andrew ELLINGTON, Cheulhee JUNG, Sheng CAI, Sanchita BHADRA, John N. MILLIGAN, Daniel GARRY, Raghav SHROFF
  • Patent number: 11435358
    Abstract: Identifying proteins and peptides, and more specifically large-scale sequencing of single peptides in a mixture of diverse peptides at the single molecule level is an unmet challenge in the field of protein sequencing. Herein are methods for identifying amino acids in peptides, including peptides with unnatural amino acids. In one embodiment, the N-terminal amino acid is labeled with a first label and an internal amino acid is labeled with a second label. In some embodiments, the labels are fluorescent labels. In other embodiments, the internal amino acid is Lysine. In other embodiments, amino acids in peptides are identified based on the fluorescent signature for each peptide at the single molecule level.
    Type: Grant
    Filed: October 1, 2021
    Date of Patent: September 6, 2022
    Assignee: BOARD OF REGENTS, THE UNIVERSITY OF TEXAS SYSTEM
    Inventors: Edward Marcotte, Eric V. Anslyn, Andrew Ellington, Jagannath Swaminathan
  • Publication number: 20220163536
    Abstract: The present invention relates to methods for identifying amino acids in peptides. In one embodiment, the present invention contemplates labeling the N-terminal amino acid with a first label and labeling an internal amino acid with a second label. In some embodiments, the labels are fluorescent labels. In other embodiments, the internal amino acid is lysine. In other embodiments, amino acids in peptides are identified based on the fluorescent signature for each peptide at the single molecule level.
    Type: Application
    Filed: July 23, 2021
    Publication date: May 26, 2022
    Inventors: Edward MARCOTTE, Jagannath SWAMINATHAN, Andrew ELLINGTON, Eric ANSLYN
  • Patent number: 11299776
    Abstract: Disclosed are compositions and methods for nucleic acid amplification and detection. Specifically, disclosed herein are compositions and methods that allow for amplification of nucleic acids at a wide variety of temperatures. This includes a polymerase which is thermostable at high temperatures, and a method of amplification that can be conducted at relatively low temperatures.
    Type: Grant
    Filed: May 10, 2018
    Date of Patent: April 12, 2022
    Assignee: BOARD OF REGENTS, THE UNIVERSITY OF TEXAS SYSTEM
    Inventors: Andrew Ellington, Cheulhee Jung, Sheng Cai, Sanchita Bhadra, John N. Milligan, Daniel Garry, Raghav Shroff
  • Publication number: 20220091130
    Abstract: Identifying proteins and peptides, and more specifically large-scale sequencing of single peptides in a mixture of diverse peptides at the single molecule level is an unmet challenge in the field of protein sequencing. Herein are methods for identifying amino acids in peptides, including peptides comprising unnatural amino acids. In one embodiment, the N-terminal amino acid is labeled with a first label and an internal amino acid is labeled with a second label. In some embodiments, the labels are fluorescent labels. In other embodiments, the internal amino acid is Lysine. In other embodiments, amino acids in peptides are identified based on the fluorescent signature for each peptide at the single molecule level.
    Type: Application
    Filed: October 1, 2021
    Publication date: March 24, 2022
    Inventors: Edward MARCOTTE, Eric V. ANSLYN, Andrew ELLINGTON, Jagannath SWAMINATHAN, Erik HERNANDEZ, Amber JOHNSON, Alexander BOULGAKOV, James L. BACHMAN, Helen SEIFERT
  • Publication number: 20220076787
    Abstract: A computer-implemented method of training a neural network to improve a characteristic of a protein comprises collecting a set of amino acid sequences from a database, compiling each amino acid sequence into a three-dimensional crystallographic structure of a folded protein, training a neural network with a subset of the three-dimensional crystallographic structures, identifying, with the neural network, a candidate residue to mutate in a target protein, and identifying, with the neural network, a predicted amino acid residue to substitute for the candidate residue, to produce a mutated protein, wherein the mutated protein demonstrates an improvement in a characteristic over the target protein. A system for improving a characteristic of a protein is also described. Improved blue fluorescent proteins generated using the system are also described.
    Type: Application
    Filed: October 27, 2021
    Publication date: March 10, 2022
    Inventors: Andrew Ellington, Austin Cole, Raghav Shroff, Ross Thyer
  • Publication number: 20210403979
    Abstract: Disclosed are methods for isothermal nucleic acid amplification and detection.
    Type: Application
    Filed: February 5, 2021
    Publication date: December 30, 2021
    Inventors: Andrew Ellington, Yu Sherry Jiang, Sanchita Bhadra, Bingling Li, Randy Allen Hughes, Yan Du, Jimmy Gollihar
  • Patent number: 11162952
    Abstract: The disclosure concerns methods for identifying amino acids in peptides, including peptides including unnatural amino acids. Various aspects of the present disclosure provide compositions and methods for amino acid-type specific labeling, as well as methods for detecting the labels. Further disclosed herein are strategies for highly multiplexed, high-throughput peptide analysis.
    Type: Grant
    Filed: September 16, 2019
    Date of Patent: November 2, 2021
    Assignee: BOARD OF REGENTS, THE UNIVERSITY OF TEXAS SYSTEM
    Inventors: Edward Marcotte, Eric V. Anslyn, Andrew Ellington, Jagannath Swaminathan, Erik Hernandez, Amber Johnson, Alexander Boulgakov, James L. Bachman, Helen Seifert
  • Publication number: 20210301321
    Abstract: Disclosed are methods for isothermal nucleic acid amplification and detection.
    Type: Application
    Filed: March 23, 2021
    Publication date: September 30, 2021
    Inventors: Andrew Ellington, Yu Sherry Jiang, Sanchita Bhadra, Bingling Li, Randy Allen Hughes, Yan Du, Jimmy Gollihar
  • Patent number: 11105812
    Abstract: The present invention relates to methods for identifying amino acids in peptides. In one embodiment, the present invention contemplates labeling the N-terminal amino acid with a first label and labeling an internal amino acid with a second label. In some embodiments, the labels are fluorescent labels. In other embodiments, the internal amino acid is lysine. In other embodiments, amino acids in peptides are identified based on the fluorescent signature for each peptide at the single molecule level.
    Type: Grant
    Filed: March 16, 2017
    Date of Patent: August 31, 2021
    Assignee: BOARD OF REGENTS, THE UNIVERSITY OF TEXAS SYSTEM
    Inventors: Edward Marcotte, Jagannath Swaminathan, Andrew Ellington, Eric V. Anslyn