Patents by Inventor Andrew G. Narvaez, Jr.

Andrew G. Narvaez, Jr. has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9644092
    Abstract: A heterogeneous in-situ polymer blend comprising a continuous phase comprising a polypropylene having a crystallinity of at least 30% and a melting point temperature Tm greater than 130° C., and a heat of fusion ?Hf greater than 65 J/g; and a dispersed phase comprising particles of an elastomeric copolymer dispersed in the continuous phase and having an average particle size of less than 5 micron, the elastomeric copolymer comprising ethylene units and 0.001 to 5 wt % diene by weight of the copolymer, and having a crystallinity of less than 20% and being at least partially cross-linked such that the degree of cross-link is at least 20%.
    Type: Grant
    Filed: June 26, 2014
    Date of Patent: May 9, 2017
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Peijun Jiang, Armenag Dekmezian, Aspy K. Mehta, Sunny Jacob, Andrew G. Narvaez, Jr., Pradeep P. Shirodkar, Weiqing Weng
  • Patent number: 9580533
    Abstract: The present invention relates to a branched modifier and a composition comprising more than 25 wt % (based on the weight of the composition) of one or more linear ethylene polymers having a g?vis of 0.97 or more and an Mw of 20,000 g/mol or more and at least 0.1 wt % of a branched modifier where the modifier has a g?vis of less than 0.97, wherein the ethylene polymer has a g?vis of at least 0.01 units higher than the g?vis of the branched modifier.
    Type: Grant
    Filed: September 20, 2012
    Date of Patent: February 28, 2017
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Peijun Jiang, Kevin R. Squire, Jianya Cheng, Pradeep P. Shirodkar, Johannes M. Soulages, Keith E. Jolibois, Ronald R. Thackston, Andrew G. Narvaez, Jr.
  • Patent number: 8993702
    Abstract: This invention relates to a transition metal catalyst compound represented by the structure: wherein M is hafnium or zirconium; each X is, independently, selected from the group consisting of hydrocarbyl radicals having from 1 to 20 carbon atoms, hydrides, amides, alkoxides, sulfides, phosphides, halogens, dienes, amines, phosphines, ethers, or a combination thereof; each R1 and R3 are, independently, a C1 to C8 alkyl group; and each R2, R4, R5, R6, R7, R8, R9, R10, R11, R12, R13, and R14 are, independently, hydrogen, or a substituted or unsubstituted hydrocarbyl group having from 1 to 8 carbon atoms, provided however that at least three of the R10-R14 groups are not hydrogen, compositions thereof and methods of use thereof to prepare polymers.
    Type: Grant
    Filed: October 19, 2012
    Date of Patent: March 31, 2015
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Donna J. Crowther, Renuka N. Ganesh, Andrew G. Narvaez, Jr., Patrick Brant
  • Publication number: 20140309359
    Abstract: A heterogeneous in-situ polymer blend comprising a continuous phase comprising a polypropylene having a crystallinity of at least 30% and a melting point temperature Tm greater than 130° C., and a heat of fusion ?Hf greater than 65 J/g; and a dispersed phase comprising particles of an elastomeric copolymer dispersed in the continuous phase and having an average particle size of less than 5 micron, the elastomeric copolymer comprising ethylene units and 0.001 to 5 wt % diene by weight of the copolymer, and having a crystallinity of less than 20% and being at least partially cross-linked such that the degree of cross-link is at least 20%.
    Type: Application
    Filed: June 26, 2014
    Publication date: October 16, 2014
    Inventors: Peijun Jiang, Armenag Dekmezian, Aspy K. Mehta, Sunny Jacob, Andrew G. Narvaez, Jr., Pradeep P. Shirodkar, Weiqing Weng
  • Patent number: 8779067
    Abstract: This invention relates to a co-oligomer having an Mn of 300 to 30,000 g/mol comprising 10 to 90 mol % propylene and 10 to 90 mol % of ethylene, wherein the oligomer has at least X % allyl chain ends, where: 1) X=(?0.94 (mole % ethylene incorporated)+100), when 10 to 60 mole % ethylene is present in the co-oligomer, and 2) X=45, when greater than 60 and less than 70 mole % ethylene is present in the co-oligomer, and 3) X=(1.83*(mole % ethylene incorporated)?83), when 70 to 90 mole % ethylene is present in the co-oligomer. This invention also relates to a homo-oligomer, comprising propylene, wherein the oligomer has: at least 93% allyl chain ends, an Mn of about 500 to about 20,000 g/mol, an isobutyl chain end to allylic vinyl group ratio of 0.8:1 to 1.2:1.0, and less than 100 ppm aluminum. This invention also relates to a process of making homo-oligomer, comprising propylene, wherein the productivity is greater than 4500 g/mmol Hf (or Zr)/hour.
    Type: Grant
    Filed: November 6, 2012
    Date of Patent: July 15, 2014
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Patrick Brant, Donna J. Crowther, Andrew G. Narvaez, Jr.
  • Patent number: 8653209
    Abstract: This invention relates to a co-oligomer having an Mn of 300 to 30,000 g/mol comprising 10 to 90 mol % propylene and 10 to 90 mol % of ethylene, wherein the oligomer has at least X % allyl chain ends, where: 1) X=(?0.94(mole % ethylene incorporated)+100), when 10 to 60 mole % ethylene is present in the co-oligomer, and 2) X=45, when greater than 60 and less than 70 mole % ethylene is present in the co-oligomer, and 3) X=(1.83*(mole % ethylene incorporated)?83), when 70 to 90 mole % ethylene is present in the co-oligomer. This invention also relates to a homo-oligomer, comprising propylene, wherein the oligomer has: at least 93% allyl chain ends, an Mn of about 500 to about 20,000 g/mol, an isobutyl chain end to allylic vinyl group ratio of 0.8:1 to 1.2:1.0, and less than 100 ppm aluminum. This invention also relates to a process of making homo-oligomer, comprising propylene, wherein the productivity is greater than 4500 g/mmol Hf (or Zr)/hour.
    Type: Grant
    Filed: November 6, 2012
    Date of Patent: February 18, 2014
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Patrick Brant, Donna J. Crowther, Andrew G. Narvaez, Jr.
  • Patent number: 8623962
    Abstract: This invention relates to a process to functionalize propylene co-oligomer comprising contacting an alkene metathesis catalyst with a heteroatom containing alkene, and a propylene a co-oligomer having an Mn of 300 to 30,000 g/mol comprising 10 to 90 mol % propylene and 10 to 90 mol % of ethylene, wherein the oligomer has at least X % allyl chain ends, where: 1) X=(?0.94 (mol % ethylene incorporated)+100), when 10 to 60 mol % ethylene is present in the co-oligomer, and 2) X=45, when greater than 60 and less than 70 mol % ethylene is present in the co-oligomer, and 3) X=(1.83*(mol % ethylene incorporated)?83), when 70 to 90 mol % ethylene is present in the co-oligomer.
    Type: Grant
    Filed: September 21, 2012
    Date of Patent: January 7, 2014
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: John R. Hagadorn, Matthew W. Holtcamp, Andrew G. Narvaez, Jr., Donna J. Crowther, Patrick Brant
  • Patent number: 8431662
    Abstract: This invention relates to a polymacromonomer comprising at least one macromonomer and from 0 to 20 wt % of a C2 to C12 comonomer, wherein the macromonomer has vinyl termination of at least 70%, and wherein the polymacromonomer has: a) a g value of less than 0.6, b) an Mw of greater than 30,000 g/mol, c) an Mn of greater than 20,000 g/mol, d) a branching index (g?)vis of less than 0.5, e) less than 25% vinyl terminations, f) at least 70 wt % macromonomer, based upon the weight of the polymacromonomer, g) from 0 to 20 wt % aromatic containing monomer, based upon the weight of the polymacromonomer and h) optionally, a melting point of 50° C. or more. This invention also relates to processes to make such polymacromonomers.
    Type: Grant
    Filed: August 20, 2012
    Date of Patent: April 30, 2013
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Patrick Brant, Andrew G. Narvaez, Jr., Donna J. Crowther
  • Publication number: 20130059992
    Abstract: This invention relates to a co-oligomer having an Mn of 300 to 30,000 g/mol comprising 10 to 90 mol % propylene and 10 to 90 mol % of ethylene, wherein the oligomer has at least X % allyl chain ends, where: 1) X=(?0.94 (mole % ethylene incorporated)+100), when 10 to 60 mole % ethylene is present in the co-oligomer, and 2) X=45, when greater than 60 and less than 70 mole % ethylene is present in the co-oligomer, and 3) X=(1.83*(mole % ethylene incorporated)?83), when 70 to 90 mole % ethylene is present in the co-oligomer. This invention also relates to a homo-oligomer, comprising propylene, wherein the oligomer has: at least 93% allyl chain ends, an Mn of about 500 to about 20,000 g/mol, an isobutyl chain end to allylic vinyl group ratio of 0.8:1 to 1.2:1.0, and less than 100 ppm aluminum. This invention also relates to a process of making homo-oligomer, comprising propylene, wherein the productivity is greater than 4500 g/mmol Hf (or Zr)/hour.
    Type: Application
    Filed: November 6, 2012
    Publication date: March 7, 2013
    Applicant: ExxonMobil Chemical Patents Inc.
    Inventors: Patrick BRANT, Donna J. CROWTHER, Andrew G. NARVAEZ, JR.
  • Patent number: 8372930
    Abstract: This invention relates to a co-oligomer having an Mn of 300 to 30,000 g/mol comprising 10 to 90 mol % propylene and 10 to 90 mol % of ethylene, wherein the oligomer has at least X % allyl chain ends, where: 1) X=(?0.94 (mole % ethylene incorporated)+100), when 10 to 60 mole % ethylene is present in the co-oligomer, and 2) X=45, when greater than 60 and less than 70 mole % ethylene is present in the co-oligomer, and 3) X=(1.83*(mole % ethylene incorporated)?83), when 70 to 90 mole % ethylene is present in the co-oligomer. This invention also relates to a homo-oligomer, comprising propylene, wherein the oligomer has: at least 93% allyl chain ends, an Mn of about 500 to about 20,000 g/mol, an isobutyl chain end to allylic vinyl group ratio of 0.8:1 to 1.2:1.0, and less than 100 ppm aluminum. This invention also relates to a process of making homo-oligomer, comprising propylene, wherein the productivity is greater than 4500 g/mmol Hf (or Zr)/hour.
    Type: Grant
    Filed: June 20, 2008
    Date of Patent: February 12, 2013
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Patrick Brant, Donna J. Crowther, Andrew G. Narvaez, Jr.
  • Publication number: 20120309903
    Abstract: This invention relates to a polymacromonomer comprising at least one macromonomer and from 0 to 20 wt % of a C2 to C12 comonomer, wherein the macromonomer has vinyl termination of at least 70%, and wherein the polymacromonomer has: a) a g value of less than 0.6, b) an Mw of greater than 30,000 g/mol, c) an Mn of greater than 20,000 g/mol, d) a branching index (g?)vis of less than 0.5, e) less than 25% vinyl terminations, f) at least 70 wt % macromonomer, based upon the weight of the polymacromonomer, g) from 0 to 20 wt % aromatic containing monomer, based upon the weight of the polymacromonomer and h) optionally, a melting point of 50° C. or more. This invention also relates to processes to make such polymacromonomers.
    Type: Application
    Filed: August 20, 2012
    Publication date: December 6, 2012
    Inventors: Patrick BRANT, Andrew G. Narvaez, JR., Donna J. Crowther
  • Patent number: 8318998
    Abstract: This invention relates to a transition metal catalyst compound represented by the structure: wherein M is hafnium or zirconium; each X is, independently, selected from the group consisting of hydrocarbyl radicals having from 1 to 20 carbon atoms, hydrides, amides, alkoxides, sulfides, phosphides, halogens, dienes, amines, phosphines, ethers, or a combination thereof; each R1 and R3 are, independently, a C1 to C8 alkyl group; and each R2, R4, R5, R6, R7, R8, R9, R10, R11, R12, R13, and R14 are, independently, hydrogen, or a substituted or unsubstituted hydrocarbyl group having from 1 to 8 carbon atoms, provided however that at least three of the R10-R14 groups are not hydrogen, compositions thereof and methods of use thereof to prepare polymers.
    Type: Grant
    Filed: March 25, 2011
    Date of Patent: November 27, 2012
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Donna J. Crowther, Renuka N. Ganesh, Andrew G. Narvaez, Jr., Patrick Brant
  • Patent number: 8283428
    Abstract: This invention relates to a polymacromonomer comprising at least one macromonomer and from 0 to 20 wt % of a C2 to C12 comonomer, wherein the macromonomer has vinyl termination of at least 70%, and wherein the polymacromonomer has: a) a g value of less than 0.6, b) an Mw of greater than 30,000 g/mol, c) an Mn of greater than 20,000 g/mol, d) a branching index (g?)vis of less than 0.5, e) less than 25% vinyl terminations, f) at least 70 wt % macromonomer, based upon the weight of the polymacromonomer, g) from 0 to 20 wt % aromatic containing monomer, based upon the weight of the polymacromonomer and h) optionally, a melting point of 50° C. or more. This invention also relates to processes to make such polymacromonomers.
    Type: Grant
    Filed: June 19, 2009
    Date of Patent: October 9, 2012
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Patrick Brant, Andrew G. Narvaez, Jr., Donna J. Crowther
  • Patent number: 8283419
    Abstract: This invention relates to a process to functionalize propylene co-oligomer comprising contacting an alkene metathesis catalyst with a heteroatom containing alkene, and a propylene a co-oligomer having an Mn of 300 to 30,000 g/mol comprising 10 to 90 mol % propylene and 10 to 90 mol % of ethylene, wherein the oligomer has at least X % allyl chain ends, where: 1) X=(?0.94 (mol % ethylene incorporated)+100), when 10 to 60 mol % ethylene is present in the co-oligomer, and 2) X=45, when greater than 60 and less than 70 mol % ethylene is present in the co-oligomer, and 3) X=(1.83*(mol % ethylene incorporated)?83), when 70 to 90 mol % ethylene is present in the co-oligomer.
    Type: Grant
    Filed: June 19, 2009
    Date of Patent: October 9, 2012
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: John R. Hagadorn, Matthew W. Holtcamp, Andrew G. Narvaez, Jr., Donna J. Crowther, Patrick Brant
  • Publication number: 20120245313
    Abstract: This invention relates to a transition metal catalyst compound represented by the structure: wherein M is hafnium or zirconium; each X is, independently, selected from the group consisting of hydrocarbyl radicals having from 1 to 20 carbon atoms, hydrides, amides, alkoxides, sulfides, phosphides, halogens, dienes, amines, phosphines, ethers, or a combination thereof; each R1 and R3 are, independently, a C1 to C8 alkyl group; and each R2, R4, R5, R6, R7, R8, R9, R10, R11, R12, R13, and R14 are, independently, hydrogen, or a substituted or unsubstituted hydrocarbyl group having from 1 to 8 carbon atoms, provided however that at least three of the R10-R14 groups are not hydrogen, compositions thereof and methods of use thereof to prepare polymers.
    Type: Application
    Filed: March 25, 2011
    Publication date: September 27, 2012
    Inventors: Donna J. Crowther, Renuka N. Ganesh, Andrew G. Narvaez, JR., Patrick Brant
  • Publication number: 20090318647
    Abstract: This invention relates to a process to functionalize propylene co-oligomer comprising contacting an alkene metathesis catalyst with a heteroatom containing alkene, and a propylene a co-oligomer having an Mn of 300 to 30,000 g/mol comprising 10 to 90 mol % propylene and 10 to 90 mol % of ethylene, wherein the oligomer has at least X % allyl chain ends, where: 1) X=(?0.94 (mol % ethylene incorporated)+100), when 10 to 60 mol % ethylene is present in the co-oligomer, and 2) X=45, when greater than 60 and less than 70 mol % ethylene is present in the co-oligomer, and 3) X=(1.83*(mol % ethylene incorporated)?83), when 70 to 90 mol % ethylene is present in the co-oligomer.
    Type: Application
    Filed: June 19, 2009
    Publication date: December 24, 2009
    Inventors: John R. Hagadorn, Matthew W. Holtcamp, Andrew G. Narvaez, JR., Donna J. Crowther, Patrick Brant
  • Publication number: 20090318640
    Abstract: This invention relates to a polymacromonomer comprising at least one macromonomer and from 0 to 20 wt % of a C2 to C12 comonomer, wherein the macromonomer has vinyl termination of at least 70%, and wherein the polymacromonomer has: a) a g value of less than 0.6, b) an Mw of greater than 30,000 g/mol, c) an Mn of greater than 20,000 g/mol, d) a branching index (g?)vis of less than 0.5, e) less than 25% vinyl terminations, f) at least 70 wt % macromonomer, based upon the weight of the polymacromonomer, g) from 0 to 20 wt % aromatic containing monomer, based upon the weight of the polymacromonomer and h) optionally, a melting point of 50° C. or more. This invention also relates to processes to make such polymacromonomers.
    Type: Application
    Filed: June 19, 2009
    Publication date: December 24, 2009
    Inventors: Patrick Brant, Andrew G. Narvaez, JR., Donna J. Crowther
  • Publication number: 20090318644
    Abstract: This invention relates to a co-oligomer having an Mn of 300 to 30,000 g/mol comprising 10 to 90 mol % propylene and 10 to 90 mol % of ethylene, wherein the oligomer has at least X % allyl chain ends, where: 1) X=(?0.94 (mole % ethylene incorporated)+100), when 10 to 60 mole % ethylene is present in the co-oligomer, and 2) X=45, when greater than 60 and less than 70 mole % ethylene is present in the co-oligomer, and 3) X=(1.83*(mole % ethylene incorporated)?83), when 70 to 90 mole % ethylene is present in the co-oligomer. This invention also relates to a homo-oligomer, comprising propylene, wherein the oligomer has: at least 93% allyl chain ends, an Mn of about 500 to about 20,000 g/mol, an isobutyl chain end to allylic vinyl group ratio of 0.8:1 to 1.2:1.0, and less than 100 ppm aluminum. This invention also relates to a process of making homo-oligomer, comprising propylene, wherein the productivity is greater than 4500 g/mmol Hf (or Zr)/hour.
    Type: Application
    Filed: June 20, 2008
    Publication date: December 24, 2009
    Inventors: Patrick Brant, Donna J. Crowther, Andrew G. Narvaez, JR.