Patents by Inventor Andrew GIBIANSKY

Andrew GIBIANSKY has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11705107
    Abstract: Embodiments of a production-quality text-to-speech (TTS) system constructed from deep neural networks are described. System embodiments comprise five major building blocks: a segmentation model for locating phoneme boundaries, a grapheme-to-phoneme conversion model, a phoneme duration prediction model, a fundamental frequency prediction model, and an audio synthesis model. For embodiments of the segmentation model, phoneme boundary detection was performed with deep neural networks using Connectionist Temporal Classification (CTC) loss. For embodiments of the audio synthesis model, a variant of WaveNet was created that requires fewer parameters and trains faster than the original. By using a neural network for each component, system embodiments are simpler and more flexible than traditional TTS systems, where each component requires laborious feature engineering and extensive domain expertise. Inference with system embodiments may be performed faster than real time.
    Type: Grant
    Filed: October 1, 2020
    Date of Patent: July 18, 2023
    Assignee: Baidu USA LLC
    Inventors: Sercan O. Arik, Mike Chrzanowski, Adam Coates, Gregory Diamos, Andrew Gibiansky, John Miller, Andrew Ng, Jonathan Raiman, Shubhahrata Sengupta, Mohammad Shoeybi
  • Patent number: 11651763
    Abstract: Described herein are systems and methods for augmenting neural speech synthesis networks with low-dimensional trainable speaker embeddings in order to generate speech from different voices from a single model. As a starting point for multi-speaker experiments, improved single-speaker model embodiments, which may be referred to generally as Deep Voice 2 embodiments, were developed, as well as a post-processing neural vocoder for Tacotron (a neural character-to-spectrogram model). New techniques for multi-speaker speech synthesis were performed for both Deep Voice 2 and Tacotron embodiments on two multi-speaker TTS datasets—showing that neural text-to-speech systems can learn hundreds of unique voices from twenty-five minutes of audio per speaker.
    Type: Grant
    Filed: November 2, 2020
    Date of Patent: May 16, 2023
    Assignee: Baidu USA LLC
    Inventors: Sercan O. Arik, Gregory Diamos, Andrew Gibiansky, John Miller, Kainan Peng, Wei Ping, Jonathan Raiman, Yanqi Zhou
  • Publication number: 20210049999
    Abstract: Described herein are systems and methods for augmenting neural speech synthesis networks with low-dimensional trainable speaker embeddings in order to generate speech from different voices from a single model. As a starting point for multi-speaker experiments, improved single-speaker model embodiments, which may be referred to generally as Deep Voice 2 embodiments, were developed, as well as a post-processing neural vocoder for Tacotron (a neural character-to-spectrogram model). New techniques for multi-speaker speech synthesis were performed for both Deep Voice 2 and Tacotron embodiments on two multi-speaker TTS datasets—showing that neural text-to-speech systems can learn hundreds of unique voices from twenty-five minutes of audio per speaker.
    Type: Application
    Filed: November 2, 2020
    Publication date: February 18, 2021
    Applicant: Baidu USA LLC
    Inventors: Sercan O. ARIK, Gregory DIAMOS, Andrew GIBIANSKY, John MILLER, Kainan PENG, Wei PING, Jonathan RAIMAN, Yanqi ZHOU
  • Publication number: 20210027762
    Abstract: Embodiments of a production-quality text-to-speech (TTS) system constructed from deep neural networks are described. System embodiments comprise five major building blocks: a segmentation model for locating phoneme boundaries, a grapheme-to-phoneme conversion model, a phoneme duration prediction model, a fundamental frequency prediction model, and an audio synthesis model. For embodiments of the segmentation model, phoneme boundary detection was performed with deep neural networks using Connectionist Temporal Classification (CTC) loss. For embodiments of the audio synthesis model, a variant of WaveNet was created that requires fewer parameters and trains faster than the original. By using a neural network for each component, system embodiments are simpler and more flexible than traditional TTS systems, where each component requires laborious feature engineering and extensive domain expertise. Inference with system embodiments may be performed faster than real time.
    Type: Application
    Filed: October 1, 2020
    Publication date: January 28, 2021
    Applicant: Baidu USA LLC
    Inventors: Sercan O. ARIK, Mike CHRZANOWSKI, Adam COATES, Gregory DIAMOS, Andrew GIBIANSKY, John MILLER, Andrew NG, Jonathan RAIMAN, Shubhahrata SENGUPTA, Mohammad SHOEYBI
  • Patent number: 10896669
    Abstract: Described herein are systems and methods for augmenting neural speech synthesis networks with low-dimensional trainable speaker embeddings in order to generate speech from different voices from a single model. As a starting point for multi-speaker experiments, improved single-speaker model embodiments, which may be referred to generally as Deep Voice 2 embodiments, were developed, as well as a post-processing neural vocoder for Tacotron (a neural character-to-spectrogram model). New techniques for multi-speaker speech synthesis were performed for both Deep Voice 2 and Tacotron embodiments on two multi-speaker TTS datasets—showing that neural text-to-speech systems can learn hundreds of unique voices from twenty-five minutes of audio per speaker.
    Type: Grant
    Filed: May 8, 2018
    Date of Patent: January 19, 2021
    Assignee: Baidu USA LLC
    Inventors: Sercan O. Arik, Gregory Diamos, Andrew Gibiansky, John Miller, Kainan Peng, Wei Ping, Jonathan Raiman, Yanqi Zhou
  • Patent number: 10872598
    Abstract: Embodiments of a production-quality text-to-speech (TTS) system constructed from deep neural networks are described. System embodiments comprise five major building blocks: a segmentation model for locating phoneme boundaries, a grapheme-to-phoneme conversion model, a phoneme duration prediction model, a fundamental frequency prediction model, and an audio synthesis model. For embodiments of the segmentation model, phoneme boundary detection was performed with deep neural networks using Connectionist Temporal Classification (CTC) loss. For embodiments of the audio synthesis model, a variant of WaveNet was created that requires fewer parameters and trains faster than the original. By using a neural network for each component, system embodiments are simpler and more flexible than traditional TTS systems, where each component requires laborious feature engineering and extensive domain expertise. Inference with system embodiments may be performed faster than real time.
    Type: Grant
    Filed: January 29, 2018
    Date of Patent: December 22, 2020
    Assignee: Baidu USA LLC
    Inventors: Sercan O. Arik, Mike Chrzanowski, Adam Coates, Gregory Diamos, Andrew Gibiansky, John Miller, Andrew Ng, Jonathan Raiman, Shubhahrata Sengupta, Mohammad Shoeybi
  • Patent number: 10796686
    Abstract: Described herein are embodiments of a fully-convolutional attention-based neural text-to-speech (TTS) system, which various embodiments may generally be referred to as Deep Voice 3. Embodiments of Deep Voice 3 match state-of-the-art neural speech synthesis systems in naturalness while training ten times faster. Deep Voice 3 embodiments were scaled to data set sizes unprecedented for TTS, training on more than eight hundred hours of audio from over two thousand speakers. In addition, common error modes of attention-based speech synthesis networks were identified and mitigated, and several different waveform synthesis methods were compared. Also presented are embodiments that describe how to scale inference to ten million queries per day on one single-GPU server.
    Type: Grant
    Filed: August 8, 2018
    Date of Patent: October 6, 2020
    Assignee: Baidu USA LLC
    Inventors: Sercan O. Arik, Wei Ping, Kainan Peng, Sharan Narang, Ajay Kannan, Andrew Gibiansky, Jonathan Raiman, John Miller
  • Patent number: 10540961
    Abstract: Described herein are systems and methods for creating and using Convolutional Recurrent Neural Networks (CRNNs) for small-footprint keyword spotting (KWS) systems. Inspired by the large-scale state-of-the-art speech recognition systems, in embodiments, the strengths of convolutional layers to utilize the structure in the data in time and frequency domains are combined with recurrent layers to utilize context for the entire processed frame. The effect of architecture parameters were examined to determine preferred model embodiments given the performance versus model size tradeoff. Various training strategies are provided to improve performance. In embodiments, using only ˜230 k parameters and yielding acceptably low latency, a CRNN model embodiment demonstrated high accuracy and robust performance in a wide range of environments.
    Type: Grant
    Filed: August 28, 2017
    Date of Patent: January 21, 2020
    Assignee: Baidu USA LLC
    Inventors: Sercan Arik, Markus Kliegl, Rewon Child, Joel Hestness, Andrew Gibiansky, Christopher Fougner, Ryan Prenger, Adam Coates
  • Publication number: 20190122651
    Abstract: Described herein are embodiments of a fully-convolutional attention-based neural text-to-speech (TTS) system, which various embodiments may generally be referred to as Deep Voice 3. Embodiments of Deep Voice 3 match state-of-the-art neural speech synthesis systems in naturalness while training ten times faster. Deep Voice 3 embodiments were scaled to data set sizes unprecedented for TTS, training on more than eight hundred hours of audio from over two thousand speakers. In addition, common error modes of attention-based speech synthesis networks were identified and mitigated, and several different waveform synthesis methods were compared. Also presented are embodiments that describe how to scale inference to ten million queries per day on one single-GPU server.
    Type: Application
    Filed: August 8, 2018
    Publication date: April 25, 2019
    Applicant: Baidu USA LLC
    Inventors: Sercan O. ARIK, Wei PING, Kainan PENG, Sharan NARANG, Ajay KANNAN, Andrew GIBIANSKY, Jonathan RAIMAN, John MILLER
  • Publication number: 20180336880
    Abstract: Described herein are systems and methods for augmenting neural speech synthesis networks with low-dimensional trainable speaker embeddings in order to generate speech from different voices from a single model. As a starting point for multi-speaker experiments, improved single-speaker model embodiments, which may be referred to generally as Deep Voice 2 embodiments, were developed, as well as a post-processing neural vocoder for Tacotron (a neural character-to-spectrogram model). New techniques for multi-speaker speech synthesis were performed for both Deep Voice 2 and Tacotron embodiments on two multi-speaker TTS datasets—showing that neural text-to-speech systems can learn hundreds of unique voices from twenty-five minutes of audio per speaker.
    Type: Application
    Filed: May 8, 2018
    Publication date: November 22, 2018
    Applicant: Baidu USA LLC
    Inventors: Sercan O. ARIK, Gregory DIAMOS, Andrew GIBIANSKY, John MILLER, Kainan PENG, Wei PING, Jonathan RAIMAN, Yanqi ZHOU
  • Publication number: 20180261213
    Abstract: Described herein are systems and methods for creating and using Convolutional Recurrent Neural Networks (CRNNs) for small-footprint keyword spotting (KWS) systems. Inspired by the large-scale state-of-the-art speech recognition systems, in embodiments, the strengths of convolutional layers to utilize the structure in the data in time and frequency domains are combined with recurrent layers to utilize context for the entire processed frame. The effect of architecture parameters were examined to determine preferred model embodiments given the performance versus model size tradeoff. Various training strategies are provided to improve performance. In embodiments, using only ˜230 k parameters and yielding acceptably low latency, a CRNN model embodiment demonstrated high accuracy and robust performance in a wide range of environments.
    Type: Application
    Filed: August 28, 2017
    Publication date: September 13, 2018
    Applicant: Baidu USA LLC
    Inventors: Sercan Arik, Markus Kliegl, Rewon Child, Joel Hestness, Andrew Gibiansky, Christopher Fougner, Ryan Prenger, Adam Coates
  • Publication number: 20180247636
    Abstract: Embodiments of a production-quality text-to-speech (TTS) system constructed from deep neural networks are described. System embodiments comprise five major building blocks: a segmentation model for locating phoneme boundaries, a grapheme-to-phoneme conversion model, a phoneme duration prediction model, a fundamental frequency prediction model, and an audio synthesis model. For embodiments of the segmentation model, phoneme boundary detection was performed with deep neural networks using Connectionist Temporal Classification (CTC) loss. For embodiments of the audio synthesis model, a variant of WaveNet was created that requires fewer parameters and trains faster than the original. By using a neural network for each component, system embodiments are simpler and more flexible than traditional TTS systems, where each component requires laborious feature engineering and extensive domain expertise. Inference with system embodiments may be performed faster than real time.
    Type: Application
    Filed: January 29, 2018
    Publication date: August 30, 2018
    Applicant: Baidu USA LLC
    Inventors: Sercan O. ARIK, Mike CHRZANOWSKI, Adam COATES, Gregory DIAMOS, Andrew GIBIANSKY, John MILLER, Andrew NG, Jonathan RAIMAN, Shubhahrata SENGUPTA, Mohammad SHOEYBI