Patents by Inventor Andrew Gorton

Andrew Gorton has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11293664
    Abstract: Ventilation systems, aircraft, and silencers are disclosed herein. An aircraft includes a ventilation system. A ventilation system includes first and second air flow sources configured to generate first and second air flows, a silencer, a first conditioning vent, and a second conditioning vent. A divider spans an interior dimension of the housing to define a first cavity and a second cavity, where the divider restricts substantially all mass flow between the first cavity and the second cavity in the housing. First and second silencer tubes have porous portions disposed in the respective cavity and are operatively coupled with the respective air flow source to receive the respective air flow. First and second conditioning vents are operatively coupled with the respective silencer tubes to direct the respective air flows to a conditioned volume.
    Type: Grant
    Filed: March 6, 2018
    Date of Patent: April 5, 2022
    Inventors: Randy Hull, Andrew Gorton, Kristopher Lynch
  • Publication number: 20190277535
    Abstract: Ventilation systems, aircraft, and silencers are disclosed herein. An aircraft includes a ventilation system. A ventilation system includes first and second air flow sources configured to generate first and second air flows, a silencer, a first conditioning vent, and a second conditioning vent. A divider spans an interior dimension of the housing to define a first cavity and a second cavity, where the divider restricts substantially all mass flow between the first cavity and the second cavity in the housing. First and second silencer tubes have porous portions disposed in the respective cavity and are operatively coupled with the respective air flow source to receive the respective air flow. First and second conditioning vents are operatively coupled with the respective silencer tubes to direct the respective air flows to a conditioned volume.
    Type: Application
    Filed: March 6, 2018
    Publication date: September 12, 2019
    Inventors: Randy Hull, Andrew Gorton, Kristopher Lynch
  • Patent number: 9845243
    Abstract: A method of forming a carbon nanotube array substrate is disclosed. One embodiment comprises depositing a composite catalyst layer on the substrate, oxidizing the composite catalyst layer, reducing the oxidized composite catalyst layer, and growing the array on the composite catalyst layer. The composite catalyst layer may comprise a group VIII element and a non-catalytic element deposited onto the substrate from an alloy. In another embodiment, the composite catalyst layer comprises alternating layers of iron and a lanthanide, preferably gadolinium or lanthanum. The composite catalyst layer may be reused to grow multiple carbon nanotube arrays without additional processing of the substrate. The method may comprise bulk synthesis by forming carbon nanotubes on a plurality of particulate substrates having a composite catalyst layer comprising the group VIII element and the non-catalytic element. In another embodiment, the composite catalyst layer is deposited on both sides of the substrate.
    Type: Grant
    Filed: June 16, 2014
    Date of Patent: December 19, 2017
    Inventors: Vesselin N. Shanov, Andrew Gorton, Yeo-Heung Yun, Mark J. Schulz
  • Publication number: 20140295098
    Abstract: A method of forming a carbon nanotube array substrate is disclosed. One embodiment comprises depositing a composite catalyst layer on the substrate, oxidizing the composite catalyst layer, reducing the oxidized composite catalyst layer, and growing the array on the composite catalyst layer. The composite catalyst layer may comprise a group VIII element and a non-catalytic element deposited onto the substrate from an alloy. In another embodiment, the composite catalyst layer comprises alternating layers of iron and a lanthanide, preferably gadolinium or lanthanum. The composite catalyst layer may be reused to grow multiple carbon nanotube arrays without additional processing of the substrate. The method may comprise bulk synthesis by forming carbon nanotubes on a plurality of particulate substrates having a composite catalyst layer comprising the group VIII element and the non-catalytic element. In another embodiment, the composite catalyst layer is deposited on both sides of the substrate.
    Type: Application
    Filed: June 16, 2014
    Publication date: October 2, 2014
    Inventors: Vesselin N. SHANOV, Andrew Gorton, Yeo-Heung Yun, Mark J. Schulz
  • Patent number: 8753602
    Abstract: A method of forming a carbon nanotube array on a substrate is disclosed. One embodiment of the method comprises depositing a composite catalyst layer on the substrate, oxidizing the composite catalyst layer, reducing the oxidized composite catalyst layer, and growing the array on the composite catalyst layer. The composite catalyst layer may comprise a group VIII element and a non-catalytic element deposited onto the substrate from an alloy. In another embodiment, the composite catalyst layer comprises alternating layers of iron and a lanthanide, preferably gadolinium or lanthanum. The composite catalyst layer may be reused to grow multiple carbon nanotube arrays without additional processing of the substrate. The method may comprise bulk synthesis by forming carbon nanotubes on a plurality of particulate substrates having a composite catalyst layer comprising the group VIII element and the non-catalytic element. In another embodiment, the composite catalyst layer is deposited on both sides of the substrate.
    Type: Grant
    Filed: April 11, 2007
    Date of Patent: June 17, 2014
    Assignee: University of Cincinnati
    Inventors: Vesselin N. Shanov, Andrew Gorton, Yeo-Heung Yun, Mark J. Schulz
  • Publication number: 20080095695
    Abstract: A method of forming a carbon nanotube array on a substrate is disclosed. One embodiment of the method comprises depositing a composite catalyst layer on the substrate, oxidizing the composite catalyst layer, reducing the oxidized composite catalyst layer, and growing the array on the composite catalyst layer. The composite catalyst layer may comprise a group VIII element and a non-catalytic element deposited onto the substrate from an alloy. In another embodiment, the composite catalyst layer comprises alternating layers of iron and a lanthanide, preferably gadolinium or lanthanum. The composite catalyst layer may be reused to grow multiple carbon nanotube arrays without additional processing of the substrate. The method may comprise bulk synthesis by forming carbon nanotubes on a plurality of particulate substrates having a composite catalyst layer comprising the group VIII element and the non-catalytic element. In another embodiment, the composite catalyst layer is deposited on both sides of the substrate.
    Type: Application
    Filed: April 11, 2007
    Publication date: April 24, 2008
    Inventors: Vesselin Shanov, Andrew Gorton, Yeo-Heung Yun, Mark Schulz