Patents by Inventor Andrew H. Breninger

Andrew H. Breninger has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230099332
    Abstract: An apparatus includes a lift pinto raise and lower a semiconductor substrate relative to a substrate support assembly in a processing chamber. The lift pin includes a top end having a conical shape tapering downwardly and a bottom end having a cylindrical shape. The apparatus comprises a lift pin holder to hold the bottom end of the lift pin.
    Type: Application
    Filed: February 18, 2021
    Publication date: March 30, 2023
    Inventors: Andrew H. Breninger, Xinyi CHEN, Tu HONG
  • Publication number: 20230002891
    Abstract: Forming a protective coating ex situ in an atomic layer deposition process to coat one or more chamber components subsequently installed in a reaction chamber provides a number of benefits over more conventional coating methods such as in situ deposition of an undercoat. In certain cases the protective coating may have a particular composition such as aluminum oxide, aluminum fluoride, aluminum nitride, yttrium oxide, and/or yttrium fluoride. The protective coating may help reduce contamination on wafers processed using the coated chamber component. Further, the protective coating may act to stabilize the processing conditions within the reaction chamber, thereby achieving very stable/uniform processing results over the course of processing many batches of wafers, and minimizing radical loss. Also described are a number of techniques that may be used to restore the protective coating after the coated chamber component is used to process semiconductor wafers.
    Type: Application
    Filed: September 7, 2022
    Publication date: January 5, 2023
    Inventors: Damodar Rajaram SHANBHAG, Guangbi YUAN, Thadeous BAMFORD, Curtis Warren BAILEY, Tony KAUSHAL, Krishna BIRRU, William SCHLOSSER, Bo GONG, Huatan QIU, Fengyuan LAI, Leonard Wai Fung KHO, Anand CHANDRASHEKAR, Andrew H. BRENINGER, Chen-Hua HSU, Geoffrey HOHN, Gang LIU, Rohit KHARE
  • Publication number: 20220406645
    Abstract: A first lift pin holder assembly includes a base portion and a stem portion including a ball lock mechanism to hold a lift pin. A second lift pin holder assembly includes a base portion and a stem portion including a fork lock mechanism to hold a lift pin. A slotted ring with coin-slot type slots is arranged on abase of a substrate support assembly. A plurality of the first or second lift pin holder assemblies are retained in the slots using retainers that surround the base portions of the lift pin holder assemblies. Each slot includes an aperture in which a T-shaped retainer is inserted. The top portion of the T-shaped retainer prevents the retainer and the lift pin holder assembly from sliding out of the slot. The lift pin, the lift pin holder assemblies, the retainers, the T-shaped retainer, and the slotted ring are made of ceramic materials.
    Type: Application
    Filed: October 28, 2020
    Publication date: December 22, 2022
    Inventors: Aleksey V. ALTECOR, Andrew h. BRENINGER
  • Publication number: 20220301835
    Abstract: Plasma viewports for high-temperature environments in semiconductor processing equipment are disclosed; such view-ports may use a triple-window design, with each window providing particular functionality.
    Type: Application
    Filed: August 21, 2020
    Publication date: September 22, 2022
    Inventors: Bin Luo, Andrew H. Breninger, John Michael Wiltse, Brian Lewis Ratliff, David James Shusteric
  • Publication number: 20220275504
    Abstract: Forming a protective coating ex situ in an atomic layer deposition process to coat one or more chamber components subsequently installed in a reaction chamber provides a number of benefits over more conventional coating methods such as in situ deposition of an undercoat. In certain cases the protective coating may have a particular composition such as aluminum oxide, aluminum fluoride, aluminum nitride, yttrium oxide, and/or yttrium fluoride. The protective coating may help reduce contamination on wafers processed using the coated chamber component. Further, the protective coating may act to stabilize the processing conditions within the reaction chamber, thereby achieving very stable/uniform processing results over the course of processing many batches of wafers, and minimizing radical loss. Also described are a number of techniques that may be used to restore the protective coating after the coated chamber component is used to process semiconductor wafers.
    Type: Application
    Filed: May 16, 2022
    Publication date: September 1, 2022
    Inventors: Damodar Rajaram SHANBHAG, Guangbi YUAN, Thadeous BAMFORD, Curtis Warren BAILEY, Tony KAUSHAL, Krishna BIRRU, William SCHLOSSER, Bo GONG, Huatan QIU, Fengyuan LAI, Leonard Wai Fung KHO, Anand CHANDRASHEKAR, Andrew H. BRENINGER, Chen-Hua HSU, Geoffrey HOHN, Gang LIU, Rohit KHARE
  • Patent number: 11365479
    Abstract: Forming a protective coating ex situ in an atomic layer deposition process to coat one or more chamber components subsequently installed in a reaction chamber provides a number of benefits over more conventional coating methods such as in situ deposition of an undercoat. In certain cases the protective coating may have a particular composition such as aluminum oxide, aluminum fluoride, aluminum nitride, yttrium oxide, and/or yttrium fluoride. The protective coating may help reduce contamination on wafers processed using the coated chamber component. Further, the protective coating may act to stabilize the processing conditions within the reaction chamber, thereby achieving very stable/uniform processing results over the course of processing many batches of wafers, and minimizing radical loss. Also described are a number of techniques that may be used to restore the protective coating after the coated chamber component is used to process semiconductor wafers.
    Type: Grant
    Filed: July 22, 2020
    Date of Patent: June 21, 2022
    Assignee: Lam Research Corporation
    Inventors: Damodar Shanbhag, Guangbi Yuan, Thadeous Bamford, Curtis Warren Bailey, Tony Kaushal, Krishna Birru, William Schlosser, Bo Gong, Huatan Qiu, Fengyuan Lai, Leonard Wai Fung Kho, Anand Chandrashekar, Andrew H. Breninger, Chen-Hua Hsu, Geoffrey Hohn, Gang Liu, Rohit Khare
  • Publication number: 20220028662
    Abstract: A processing tool, comprising a processing chamber for processing a work piece, the processing chamber including at least one component part that is coated with multi-layer protective coating including (a) an aluminum layer formed on the at least one component part and (b) a ceramic coating formed on the aluminum layer. In various embodiments, the multi-layer protective coating can be applied to at least one component part prior to assembly of the processing chamber or at least partially in situ the processing chamber.
    Type: Application
    Filed: November 13, 2019
    Publication date: January 27, 2022
    Inventors: Paul KONKOLA, Ramesh CHANDRASEKHARAN, Andrew H. BRENINGER, Tony Shaleen KAUSHAL
  • Publication number: 20200347497
    Abstract: Forming a protective coating ex situ in an atomic layer deposition process to coat one or more chamber components subsequently installed in a reaction chamber provides a number of benefits over more conventional coating methods such as in situ deposition of an undercoat. In certain cases the protective coating may have a particular composition such as aluminum oxide, aluminum fluoride, aluminum nitride, yttrium oxide, and/or yttrium fluoride. The protective coating may help reduce contamination on wafers processed using the coated chamber component. Further, the protective coating may act to stabilize the processing conditions within the reaction chamber, thereby achieving very stable/uniform processing results over the course of processing many batches of wafers, and minimizing radical loss. Also described are a number of techniques that may be used to restore the protective coating after the coated chamber component is used to process semiconductor wafers.
    Type: Application
    Filed: July 22, 2020
    Publication date: November 5, 2020
    Inventors: Damodar Shanbhag, Guangbi Yuan, Thadeous Bamford, Curtis Warren Bailey, Tony Kaushal, Krishna Birru, William Schlosser, Bo Gong, Huatan Qiu, Fengyuan Lai, Leonard Wai Fung Kho, Anand Chandrashekar, Andrew H. Breninger, Chen-Hua Hsu, Geoffrey Hohn, Gang Liu, Rohit Khare
  • Patent number: 10760158
    Abstract: Forming a protective coating ex situ in an atomic layer deposition process to coat one or more chamber components subsequently installed in a reaction chamber provides a number of benefits over more conventional coating methods such as in situ deposition of an undercoat. In certain cases the protective coating may have a particular composition such as aluminum oxide, aluminum fluoride, aluminum nitride, yttrium oxide, and/or yttrium fluoride. The protective coating may help reduce contamination on wafers processed using the coated chamber component. Further, the protective coating may act to stabilize the processing conditions within the reaction chamber, thereby achieving very stable/uniform processing results over the course of processing many batches of wafers, and minimizing radical loss. Also described are a number of techniques that may be used to restore the protective coating after the coated chamber component is used to process semiconductor wafers.
    Type: Grant
    Filed: April 16, 2018
    Date of Patent: September 1, 2020
    Assignee: Lam Research Corporation
    Inventors: Damodar Shanbhag, Guangbi Yuan, Thadeous Bamford, Curtis Warren Bailey, Tony Kaushal, Krishna Birru, William Schlosser, Bo Gong, Fengyuan Lai, Leonard Wai Fung Kho, Anand Chandrashekar, Andrew H. Breninger, Chen-Hua Hsu, Geoffrey Hohn, Gang Liu, Rohit Khare, Huatan Qiu
  • Patent number: 10460977
    Abstract: A lift pin holder assembly includes a lift pin holder including a central bore defining a first groove arranged on a radially inner surface of the central bore. The lift pin holder is made of a non-metallic material. A lift pin includes a second groove arranged on a radially outer surface thereof. A spring is at least partially arranged in the first groove of the lift pin holder and the second groove of the lift pin to retain the lift pin in the lift pin holder.
    Type: Grant
    Filed: September 29, 2016
    Date of Patent: October 29, 2019
    Assignee: LAM RESEARCH CORPORATION
    Inventors: Andrew H. Breninger, Gary Lind
  • Publication number: 20190185999
    Abstract: Forming a protective coating ex situ in an atomic layer deposition process to coat one or more chamber components subsequently installed in a reaction chamber provides a number of benefits over more conventional coating methods such as in situ deposition of an undercoat. In certain cases the protective coating may have a particular composition such as aluminum oxide, aluminum fluoride, aluminum nitride, yttrium oxide, and/or yttrium fluoride. The protective coating may help reduce contamination on wafers processed using the coated chamber component. Further, the protective coating may act to stabilize the processing conditions within the reaction chamber, thereby achieving very stable/uniform processing results over the course of processing many batches of wafers, and minimizing radical loss. Also described are a number of techniques that may be used to restore the protective coating after the coated chamber component is used to process semiconductor wafers.
    Type: Application
    Filed: April 16, 2018
    Publication date: June 20, 2019
    Inventors: Damodar Shanbhag, Guangbi Yuan, Thadeous Bamford, Curtis Warren Bailey, Tony Kaushal, Krishna Birru, William Schlosser, Bo Gong, Huatan Qiu, Fengyuan Lai, Leonard Wai Fung Kho, Anand Chandrashekar, Andrew H. Breninger, Chen-Hua Hsu, Geoffrey Hohn, Gang Liu, Rohit Khare
  • Publication number: 20180090363
    Abstract: A lift pin holder assembly includes a lift pin holder including a central bore defining a first groove arranged on a radially inner surface of the central bore. The lift pin holder is made of a non-metallic material. A lift pin includes a second groove arranged on a radially outer surface thereof. A spring is at least partially arranged in the first groove of the lift pin holder and the second groove of the lift pin to retain the lift pin in the lift pin holder.
    Type: Application
    Filed: September 29, 2016
    Publication date: March 29, 2018
    Inventors: Andrew H. Breninger, Gary Lind
  • Publication number: 20040156049
    Abstract: Purging of a light beam path in an effective manner that minimizes the affect of the purging requirement on system throughput. In one embodiment, the invention is incorporated into a birefringence measurement system that has several components for directing light through a sample optical element and thereafter detecting and analyzing the light. The segment of the beam path through the sample is isolated to reduce the volume that requires continual purging.
    Type: Application
    Filed: February 10, 2003
    Publication date: August 12, 2004
    Applicant: Hinds Instruments, Inc.
    Inventors: Andrew H. Breninger, Christopher O. Griffiths, Douglas C. Mark, Artemiy Mikheyev, Baoliang Wang
  • Patent number: 6765734
    Abstract: A holder for optical elements, or samples, in an optical setup. The holder is readily adjustments to accommodate samples of various sizes, such as cylindrical shaped samples of various diameters. The holder provides stable support for the sample, irrespective of the size of the sample and maximizes the area of the sample through which a light beam may pass as part of the analysis of the optical properties of the sample.
    Type: Grant
    Filed: March 14, 2003
    Date of Patent: July 20, 2004
    Assignee: Hinds Instruments, Inc.
    Inventors: Christopher O. Griffiths, Andrew H. Breninger