Patents by Inventor Andrew H. Loomis

Andrew H. Loomis has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7858917
    Abstract: A photon-counting Geiger-mode avalanche photodiode intensity imaging array includes an array of pixels, each having an avalanche photodiode. A pixel senses an avalanche event and stores, in response to the sensed avalanche event, a single bit digital value therein. An array of accumulators are provided such that each accumulator is associated with a pixel. A row decoder circuit addresses a pixel row within the array of pixels. A bit sensing circuit converts a precharged capacitance into a digital value during read operations.
    Type: Grant
    Filed: April 30, 2004
    Date of Patent: December 28, 2010
    Assignee: Massachusetts Institute of Technology
    Inventors: Alvin Stern, Brian F. Aull, Bernard B. Kosicki, Robert K. Reich, Bradley J. Felton, David C. Shaver, Andrew H. Loomis, Douglas J. Young
  • Patent number: 7682933
    Abstract: Provided is a method and apparatus for close alignment of two or more electrically conductive wafers which are positioned face-to-face in closely spaced opposition, the wafers having position marks on corresponding portions thereof, the wafers being aligned as to their mating components, as guided by optically comparing the alignment of the respective position marks; deflecting an interior portion of one of the wafers into contact with the other wafer, to partially bond the wafers to each other, then fully contacting and bonding the rest of the wafer pair and then optically checking the resulting wafer alignment to see if same is acceptable.
    Type: Grant
    Filed: September 26, 2007
    Date of Patent: March 23, 2010
    Assignee: The United States of America as represented by the Secretary of the Air Force
    Inventor: Andrew H. Loomis
  • Patent number: 5940685
    Abstract: The wafer thickness of a CCD front illuminated silicon wafer is reduced to about ten to twenty microns, the Al substrate is removed and a 5-35 nanometer silicon oxide layer is produced on the thinned back of the silicon wafer followed by implanting boron ions within the back surface to a depth up to about ten nanometers. Furnace annealing the wafer is now carried out, and the Al substrate is redeposited to enable the formation of gate contacts.
    Type: Grant
    Filed: October 28, 1996
    Date of Patent: August 17, 1999
    Assignee: The United States of America as represented by the Secretary of the Air Force
    Inventors: Andrew H. Loomis, James A. Gregory, Eugene D. Savoye, Bernard B. Kosicki
  • Patent number: 5880777
    Abstract: An imaging system is provided for imaging a scene to produce a sequence of image frames of the scene at a frame rate, R, of at least about 25 image frames per second. The system includes an optical input port, a charge-coupled imaging device, an analog signal processor, and an analog-to-digital processor (A/D). The A/D digitizes the amplified pixel signal to produce a digital image signal formatted as a sequence of image frames each of a plurality of digital pixel values and having a dynamic range of digital pixel values represented by a number of digital bits, B, where B is greater than 8. A digital image processor is provided for processing digital pixel values in the sequence of image frames to produce an output image frame sequence at the frame rate, R, representative of the imaged scene, with a latency of no more than about 1/R and a dynamic range of image frame pixel values represented by a number of digital bits, D, where D is less than B.
    Type: Grant
    Filed: April 15, 1996
    Date of Patent: March 9, 1999
    Assignee: Massachusetts Institute of Technology
    Inventors: Eugene D. Savoye, Allen M. Waxman, Robert K. Reich, Barry E. Burke, James A. Gregory, William H. McGonagle, Andrew H. Loomis, Bernard B. Kosicki, Robert W. Mountain, Alan N. Gove, David A. Fay, James E. Carrick