Patents by Inventor Andrew Hawkins

Andrew Hawkins has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20120144028
    Abstract: A monitoring program is run on a computer to identify a process running on the computer, and, for the identified process, determine whether or not one or more predetermined characteristics of the process complies with respective reference characteristics. This allows the program to automatically distinguish whether the process is likely to be a productive process or a non-productive process. For each characteristic a certainty value is incremented or decremented depending on whether the characteristic complies with the reference characteristic. Examples of characteristics are the time pattern of running of a process and the use of hardware resources by the process. Other characteristics include receiving input from a user and connections to known IP addresses. The monitoring process may be used to control power consumption to detect and run non-productive processes in a low power state.
    Type: Application
    Filed: November 23, 2011
    Publication date: June 7, 2012
    Inventors: Mark Blackburn, Geoff Collins, Andrew Hawkins
  • Patent number: 8158404
    Abstract: The present invention relates to recombinant microorganisms comprising biosynthetic pathways and methods of using said recombinant microorganisms to produce various beneficial metabolites. In various aspects of the invention, the recombinant microorganisms may further comprise one or more modifications resulting in the reduction or elimination of 3 keto-acid (e.g., acetolactate and 2-aceto-2-hydroxybutyrate) and/or aldehyde-derived by-products. In various embodiments described herein, the recombinant microorganisms may be microorganisms of the Saccharomyces clade, Crabtree-negative yeast microorganisms, Crabtree-positive yeast microorganisms, post-WGD (whole genome duplication) yeast microorganisms, pre-WGD (whole genome duplication) yeast microorganisms, and non-fermenting yeast microorganisms.
    Type: Grant
    Filed: March 30, 2011
    Date of Patent: April 17, 2012
    Assignee: Gevo, Inc.
    Inventors: Doug Lies, Stephanie Porter-Scheinman, Julie Kelly, Catherine Asleson Dundon, Aristos Aristidou, Andrew Hawkins
  • Patent number: 8153415
    Abstract: The present invention relates to recombinant microorganisms comprising biosynthetic pathways and methods of using said recombinant microorganisms to produce various beneficial metabolites. In various aspects of the invention, the recombinant microorganisms may further comprise one or more modifications resulting in the reduction or elimination of 3 keto-acid (e.g., acetolactate and 2-aceto-2-hydroxybutyrate) and/or aldehyde-derived by-products. In various embodiments described herein, the recombinant microorganisms may be microorganisms of the Saccharomyces clade, Crabtree-negative yeast microorganisms, Crabtree-positive yeast microorganisms, post-WGD (whole genome duplication) yeast microorganisms, pre-WGD (whole genome duplication) yeast microorganisms, and non-fermenting yeast microorganisms.
    Type: Grant
    Filed: March 31, 2011
    Date of Patent: April 10, 2012
    Assignee: Gevo, Inc.
    Inventors: Thomas Buelter, Andrew Hawkins, Stephanie Porter-Scheinman, Peter Meinhold, Catherine Asleson Dundon, Aristos Aristidou, Jun Urano, Doug Lies, Matthew Peters, Melissa Dey, Justas Jancauskas, Julie Kelly, Ruth Berry
  • Patent number: 8133715
    Abstract: The present invention relates to recombinant microorganisms comprising biosynthetic pathways and methods of using said recombinant microorganisms to produce various beneficial metabolites. In various aspects of the invention, the recombinant microorganisms may further comprise one or more modifications resulting in the reduction or elimination of 3 keto-acid (e.g., acetolactate and 2-aceto-2-hydroxybutyrate) and/or aldehyde-derived by-products. In various embodiments described herein, the recombinant microorganisms may be microorganisms of the Saccharomyces clade, Crabtree-negative yeast microorganisms, Crabtree-positive yeast microorganisms, post-WGD (whole genome duplication) yeast microorganisms, pre-WGD (whole genome duplication) yeast microorganisms, and non-fermenting yeast microorganisms.
    Type: Grant
    Filed: March 29, 2011
    Date of Patent: March 13, 2012
    Assignee: Gevo, Inc.
    Inventors: Thomas Buelter, Andrew Hawkins, Stephanie Porter-Scheinman, Peter Meinhold, Catherine Asleson Dundon, Aristos Aristidou, Jun Urano, Matthew Peters, Melissa Dey, Justas Jancauskas, Julie Kelly, Ruth Berry
  • Publication number: 20120058532
    Abstract: The present invention is generally provides recombinant microorganisms comprising engineered metabolic pathways capable of producing C3-C5 alcohols under aerobic and anaerobic conditions. The invention further provides ketol-acid reductoisomerase enzymes which have been mutated or modified to increase their NADH-dependent activity or to switch the cofactor preference from NADPH to NADH and are expressed in the modified microorganisms. In addition, the invention provides isobutyraldehyde dehydrogenase enzymes expressed in modified microorganisms. Also provided are methods of producing beneficial metabolites under aerobic and anaerobic conditions by contacting a suitable substrate with the modified microorganisms of the present invention.
    Type: Application
    Filed: October 11, 2011
    Publication date: March 8, 2012
    Applicants: California Institute of Technology, Gevo, Inc.
    Inventors: Thomas Buelter, Peter Meinhold, Reid M. Renny Feldman, Andrew Hawkins, Sabine Bastian, Frances Arnold, Jun Urano
  • Publication number: 20120028324
    Abstract: The present invention is generlly provides recombinant microorganisms comprising engineered metabolic pathways capable of producing C3-C5 alcohols under aerobic and anaerobic conditions. The invention further provides ketol-acid reductoisomerase enzymes which have been mutated or modified to increase their NADH-dependent activity or to switch the cofactor preference from NADPH to NADH and are expressed in the modified microorganisms. In addition, the invention provides isobutyraldehyde dehydrogenase enzymes expressed in modified microorganisms. Also provided are methods of producing beneficial metabolites under aerobic and anaerobic conditions by contacting a suitable substrate with the modified microorganisms of the present invention.
    Type: Application
    Filed: October 10, 2011
    Publication date: February 2, 2012
    Applicants: California Institute of Technology, Gevo, Inc.
    Inventors: Thomas Buelter, Peter Meinhold, Reid M. Renny Feldman, Andrew Hawkins, Sabine Bastian, Frances Arnold, Jun Urano
  • Publication number: 20120028322
    Abstract: The present invention is directed to recombinant microorganisms comprising one or more dihydroxyacid dehydratase (DHAD)-requiring biosynthetic pathways and methods of using said recombinant microorganisms to produce beneficial metabolites derived from said DHAD-requiring biosynthetic pathways. In various aspects of the invention, the recombinant microorganisms may be engineered to overexpress one or more polynucleotides encoding one or more Aft proteins or homologs thereof. In some embodiments, the recombinant microorganisms may comprise a cytosolically localized DHAD enzyme. In additional embodiments, the recombinant microorganisms may comprise a mitochondrially localized DHAD enzyme.
    Type: Application
    Filed: September 27, 2011
    Publication date: February 2, 2012
    Applicant: GEVO, INC.
    Inventors: Catherine Asleson Dundon, Aristos Aristidou, Andrew Hawkins, Doug Lies, Lynne H. Albert
  • Publication number: 20120015417
    Abstract: The present invention is directed to recombinant microorganisms comprising one or more dihydroxyacid dehydratase (DHAD)-requiring biosynthetic pathways and methods of using said recombinant microorganisms to produce beneficial metabolites derived from said DHAD-requiring biosynthetic pathways. In various aspects of the invention, the recombinant microorganisms may be engineered to overexpress one or more polynucleotides encoding one or more Aft proteins or homologs thereof. In some embodiments, the recombinant microorganisms may comprise a cytosolically localized DHAD enzyme. In additional embodiments, the recombinant microorganisms may comprise a mitochondrially localized DHAD enzyme.
    Type: Application
    Filed: September 27, 2011
    Publication date: January 19, 2012
    Applicant: GEVO, INC.
    Inventors: Catherine Asleson Dundon, Aristos Aristidou, Andrew Hawkins, Doug Lies, Lynne H. Albert
  • Patent number: 8071358
    Abstract: The present invention is directed to recombinant microorganisms comprising one or more dihydroxyacid dehydratase (DHAD)-requiring biosynthetic pathways and methods of using said recombinant microorganisms to produce beneficial metabolites derived from said DHAD-requiring biosynthetic pathways. In various aspects of the invention, the recombinant microorganisms may be engineered to overexpress one or more polynucleotides encoding one or more Aft proteins or homologs thereof. In some embodiments, the recombinant microorganisms may comprise a cytosolically localized DHAD enzyme. In additional embodiments, the recombinant microorganisms may comprise a mitochondrially localized DHAD enzyme.
    Type: Grant
    Filed: September 8, 2011
    Date of Patent: December 6, 2011
    Assignee: Gevo, Inc.
    Inventors: Catherine Asleson Dundon, Aristos Aristidou, Andrew Hawkins, Doug Lies, Lynne Albert
  • Publication number: 20110287500
    Abstract: The present invention provides recombinant microorganisms comprising isobutanol producing metabolic pathway with at least one isobutanol pathway enzyme localized in the cytosol, wherein said recombinant microorganism is selected to produce isobutanol from a carbon source. Methods of using said recombinant microorganisms to produce isobutanol are also provided. In various aspects of the invention, the recombinant microorganisms may comprise a cytosolically active isobutanol pathway enzymes. In some embodiments, the invention provides mutated, modified, and/or chimeric isobutanol pathway enzymes with cytosolic activity. In various embodiments described herein, the recombinant microorganisms may be microorganisms of the Saccharomyces clade, Crabtree-negative yeast microorganisms, Crabtree-positive yeast microorganisms, post-WGD (whole genome duplication) yeast microorganisms, pre-WGD (whole genome duplication) yeast microorganisms, and non-fermenting yeast microorganisms.
    Type: Application
    Filed: July 5, 2011
    Publication date: November 24, 2011
    Applicant: GEVO, INC.
    Inventors: Jun URANO, Catherine Asleson Dundon, Peter Meinhold, Reid M. Renny Feldman, Aristos Aristidou, Andrew Hawkins, Thomas Buelter, Matthew Peters, Doug Lies, Stephanie Porter-Scheinman, Ruth Berry, Ishmeet Kalra
  • Publication number: 20110275129
    Abstract: The present invention relates to recombinant microorganisms comprising biosynthetic pathways and methods of using said recombinant microorganisms to produce various beneficial metabolites. In various aspects of the invention, the recombinant microorganisms may further comprise one or more modifications resulting in the reduction or elimination of 3 keto-acid (e.g., acetolactate and 2-aceto-2-hydroxybutyrate) and/or aldehyde-derived by-products. In various embodiments described herein, the recombinant microorganisms may be microorganisms of the Saccharomyces clade, Crabtree-negative yeast microorganisms, Crabtree-positive yeast microorganisms, post-WGD (whole genome duplication) yeast microorganisms, pre-WGD (whole genome duplication) yeast microorganisms, and non-fermenting yeast microorganisms.
    Type: Application
    Filed: March 29, 2011
    Publication date: November 10, 2011
    Applicant: GEVO, INC.
    Inventors: Thomas Buelter, Andrew Hawkins, Stephanie Porter-Scheinman, Peter Meinhold, Catherine Asleson Dundon, Aristos Aristidou, Jun Urano, Matthew Peters, Melissa Dey, Justas Jancauskas, Julie Kelly, Ruth Berry
  • Publication number: 20110236942
    Abstract: The present invention relates to recombinant microorganisms comprising biosynthetic pathways and methods of using said recombinant microorganisms to produce various beneficial metabolites. In various aspects of the invention, the recombinant microorganisms may further comprise one or more modifications resulting in the reduction or elimination of 3 keto-acid (e.g., acetolactate and 2-aceto-2-hydroxybutyrate) and/or aldehyde-derived by-products. In various embodiments described herein, the recombinant microorganisms may be microorganisms of the Saccharomyces clade, Crabtree-negative yeast microorganisms, Crabtree-positive yeast microorganisms, post-WGD (whole genome duplication) yeast microorganisms, pre-WGD (whole genome duplication) yeast microorganisms, and non-fermenting yeast microorganisms.
    Type: Application
    Filed: March 30, 2011
    Publication date: September 29, 2011
    Applicant: GEVO, INC.
    Inventors: Andrew Hawkins, Stephanie Porter-Scheinman, Catherine Asleson Dundon, Aristos Aristidou, Doug Lies, Julie Kelly
  • Patent number: 8017376
    Abstract: The present invention is directed to recombinant microorganisms comprising one or more dihydroxyacid dehydratase (DHAD)-requiring biosynthetic pathways and methods of using said recombinant microorganisms to produce beneficial metabolites derived from said DHAD-requiring biosynthetic pathways. In various aspects of the invention, the recombinant microorganisms may be engineered to overexpress one or more polynucleotides encoding one or more Aft proteins or homologs thereof. In some embodiments, the recombinant microorganisms may comprise a cytosolically localized DHAD enzyme. In additional embodiments, the recombinant microorganisms may comprise a mitochondrially localized DHAD enzyme.
    Type: Grant
    Filed: November 24, 2010
    Date of Patent: September 13, 2011
    Assignee: Gevo, Inc.
    Inventors: Catherine Asleson Dundon, Aristos Aristidou, Andrew Hawkins, Doug Lies, Lynne H. Albert
  • Publication number: 20110201073
    Abstract: The present invention relates to recombinant microorganisms comprising biosynthetic pathways and methods of using said recombinant microorganisms to produce various beneficial metabolites. In various aspects of the invention, the recombinant microorganisms may further comprise one or more modifications resulting in the reduction or elimination of 3 keto-acid (e.g., acetolactate and 2-aceto-2-hydroxybutyrate) and/or aldehyde-derived by-products. In various embodiments described herein, the recombinant microorganisms may be microorganisms of the Saccharomyces clade, Crabtree-negative yeast microorganisms, Crabtree-positive yeast microorganisms, post-WGD (whole genome duplication) yeast microorganisms, pre-WGD (whole genome duplication) yeast microorganisms, and non-fermenting yeast microorganisms.
    Type: Application
    Filed: March 31, 2011
    Publication date: August 18, 2011
    Applicant: GEVO, INC.
    Inventors: Thomas Buelter, Andrew Hawkins, Stephanie Porter-Scheinman, Peter Meinhold, Catherine Asleson Dundon, Aristos Aristidou, Jun Urano, Doug Lies, Matthew Peters, Melissa Dey, Justas Jancauskas, Julie Kelly, Ruth Berry
  • Publication number: 20110201090
    Abstract: The present invention relates to recombinant microorganisms comprising biosynthetic pathways and methods of using said recombinant microorganisms to produce various beneficial metabolites. In various aspects of the invention, the recombinant microorganisms may further comprise one or more modifications resulting in the reduction or elimination of 3 keto-acid (e.g., acetolactate and 2-aceto-2-hydroxybutyrate) and/or aldehyde-derived by-products. In various embodiments described herein, the recombinant microorganisms may be microorganisms of the Saccharomyces clade, Crabtree-negative yeast microorganisms, Crabtree-positive yeast microorganisms, post-WGD (whole genome duplication) yeast microorganisms, pre-WGD (whole genome duplication) yeast microorganisms, and non-fermenting yeast microorganisms.
    Type: Application
    Filed: February 11, 2011
    Publication date: August 18, 2011
    Applicant: GEVO, INC.
    Inventors: Thomas Buelter, Andrew Hawkins, Stephanie Porter-Scheinman, Peter Meinhold, Catherine Asleson Dundon, Aristos Aristidou, Jun Urano, Doug Lies, Matthew Peters, Melissa Dey, Justas Jancauskas, Kent Evans, Julie Kelly, Ruth Berry
  • Publication number: 20110183393
    Abstract: The present invention is directed to recombinant microorganisms comprising one or more dihydroxyacid dehydratase (DHAD)-requiring biosynthetic pathways and methods of using said recombinant microorganisms to produce beneficial metabolites derived from said DHAD-requiring biosynthetic pathways. In various aspects of the invention, the recombinant microorganisms may be engineered to overexpress one or more polynucleotides encoding one or more Aft proteins or homologs thereof. In some embodiments, the recombinant microorganisms may comprise a cytosolically localized DHAD enzyme. In additional embodiments, the recombinant microorganisms may comprise a mitochondrially localized DHAD enzyme.
    Type: Application
    Filed: November 24, 2010
    Publication date: July 28, 2011
    Applicant: GEVO, INC.
    Inventors: Catherine Asleson Dundon, Aristos Aristidou, Andrew Hawkins, Doug Lies, Lynne H. Albert
  • Publication number: 20110093588
    Abstract: A computer implemented method of monitoring the performance of a computer comprises determining the value of an activity metric of the monitored computer. The contribution(s) to the said value of one or more predetermined activities is/are determined In one embodiment, the said contribution(s) are subtracted from the said total value to provide a net value representing a measure of the performance of the computer. A predetermined data set may be used to identify the one or more predetermined activities. In another embodiment, the value of at least one activity metric of the monitored computer is determined excluding contributions to that value from the said one or more predetermined activities identified from the said data set to provide a net value representing a measure of the performance of the computer. The net value may be used to control the power consumption of the computer.
    Type: Application
    Filed: August 21, 2010
    Publication date: April 21, 2011
    Inventors: Sumir KARAYI, Mark Blackburn, Andrew Hawkins, Richard Cudd, Sophie Chang
  • Publication number: 20110076733
    Abstract: The present invention provides recombinant microorganisms comprising isobutanol producing metabolic pathway with at least one isobutanol pathway enzyme localized in the cytosol, wherein said recombinant microorganism is selected to produce isobutanol from a carbon source. Methods of using said recombinant microorganisms to produce isobutanol are also provided. In various aspects of the invention, the recombinant microorganisms may comprise a cytosolically active isobutanol pathway enzymes. In some embodiments, the invention provides mutated, modified, and/or chimeric isobutanol pathway enzymes with cytosolic activity. In various embodiments described herein, the recombinant microorganisms may be microorganisms of the Saccharomyces clade, Crabtree-negative yeast microorganisms, Crabtree-positive yeast microorganisms, post-WGD (whole genome duplication) yeast microorganisms, pre-WGD (whole genome duplication) yeast microorganisms, and non-fermenting yeast microorganisms.
    Type: Application
    Filed: August 12, 2010
    Publication date: March 31, 2011
    Applicant: GEVO, INC.
    Inventors: Jun Urano, Catherine Asleson Dundon, Peter Meinhold, Reid M. Renny Feldman, Aristos Aristidou, Andrew Hawkins, Thomas Buelter, Matthew Peters, Doug Lies, Stephanie Porter-Scheinman, Ruth Berry, Ishmeet Kalra
  • Patent number: 7901390
    Abstract: A disposable garment having a side elastomeric material and a waist elastomeric material is disclosed. The disposable garment has a front region, a back region, a crotch region between the front region and the back region. The disposable garment comprises a chassis, a waist elastomeric material, a side elastomeric material, and seams. The chassis has a topsheet, a backsheet joined with the topsheet, and an absorbent core interposed between the topsheet and the backsheet. The chassis has a central panel having a waist edge and side edges, an ear panel having a waist edge, and a waistband panel in the front region and the back region. The ear panel extends laterally outwardly from each side edge of the central panel. The waistband panel extends longitudinally outwardly from the waist edge of the central panel and the waist edge of the ear panel.
    Type: Grant
    Filed: May 24, 1999
    Date of Patent: March 8, 2011
    Assignee: The Procter & Gamble Company
    Inventors: Gregory Ashton, Craig Andrew Hawkins, Frederick Michael Langdon, Eiro Fukuda, Fumito Furukawa
  • Publication number: 20110054846
    Abstract: A computer implemented method of monitoring the performance of a computer comprises monitoring the computer to determine the values of a plurality of activity metrics of the monitored computer. A weighted combination of functions of the determined values is calculated as a measure of performance of the monitored computer. The weighted combination may be a weighted combination of net values of activity metrics. In one embodiment, the net values are calculated as the said values of the plurality of activity metrics of the monitored computer excluding contributions to the values from the one or more predetermined activities. In another embodiment, the net values are calculated as follows. The total values of the respective activity metrics of the monitored computer are determined. The contribution(s) to the said total values of the said one or more predetermined activities are determined The said contribution(s) are subtracted from the said total values to provide net values.
    Type: Application
    Filed: August 23, 2010
    Publication date: March 3, 2011
    Inventors: Sumir Karayi, Mark Blackburn, Andrew Hawkins, Fredrick Kasadha, Agnieszka Sosna, Edward Sykes, Richard Cudd, Sophie Chang