Patents by Inventor Andrew Huibers

Andrew Huibers has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11973926
    Abstract: An autostereoscopic display system includes a transmissive display panel including a backlight having an array of backlight pixels, a selectively-selectively-transmissive display pixel matrix having a first side facing the backlight and an opposing second side, the selectively-transmissive display pixel matrix comprising an array of display pixels, a first lenticular array disposed between the backlight and the first side of the selectively-transmissive display pixel matrix, and a second lenticular array disposed facing the second side of the selectively-transmissive display pixel matrix. The backlight is configured to separately activate different subsets of the backlight pixels such that light emitted from an activated subset of backlight pixels and transmitted through the first lenticular array, the selectively-transmissive display pixel matrix, and the second lenticular array is emitted by the display panel as display light in a corresponding separate direction relative to the display panel.
    Type: Grant
    Filed: March 2, 2021
    Date of Patent: April 30, 2024
    Assignee: GOOGLE LLC
    Inventors: John D. Perreault, Andrew Huibers
  • Patent number: 11887550
    Abstract: A display system including a tracking subsystem configured to track one of a pose of a head of a viewer or a pose of an eye of the viewer. The display system further includes an image correction module configured to, for each pixel of at least a subset of pixels of an input image, determine a pixel view angle for the pixel based on the pose of the head or the pose of the eye, determine a corrected pixel value based on an input pixel value of the pixel in the input image and based on the pixel view angle; and provide the corrected pixel value for the pixel in an angle-corrected image corresponding to the input image. The display system further includes a display panel to display the angle-corrected image.
    Type: Grant
    Filed: December 12, 2019
    Date of Patent: January 30, 2024
    Assignee: GOOGLE LLC
    Inventors: Patrick Llull, John D. Perreault, Andrew Huibers
  • Publication number: 20230112542
    Abstract: A system for projecting dots onto a three-dimensional image is configured to activate multiple pseudo-random dot projectors sequentially. Each pseudo-random dot projector includes an illumination source and a wavefront modulating element (WME) located along an optical axis in a path traversed by radiation produced by the illumination source. The system is configured to form images of dots in the projection plane along the optical axis. The system may also include controlling circuitry configured to perform a sequential projection operation on the plurality of pseudo-random dot projection systems to produce a temporal sequence of images and aggregate and process the temporal sequence of images to produce a high-resolution depth image of the three-dimensional surface.
    Type: Application
    Filed: October 8, 2021
    Publication date: April 13, 2023
    Inventors: Xi Chen, Andrew Huibers
  • Publication number: 20220400245
    Abstract: An autostereoscopic display system includes a transmissive display panel including a backlight having an array of backlight pixels, a selectively-selectively-transmissive display pixel matrix having a first side facing the backlight and an opposing second side, the selectively-transmissive display pixel matrix comprising an array of display pixels, a first lenticular array disposed between the backlight and the first side of the selectively-transmissive display pixel matrix, and a second lenticular array disposed facing the second side of the selectively-transmissive display pixel matrix. The backlight is configured to separately activate different subsets of the backlight pixels such that light emitted from an activated subset of backlight pixels and transmitted through the first lenticular array, the selectively-transmissive display pixel matrix, and the second lenticular array is emitted by the display panel as display light in a corresponding separate direction relative to the display panel.
    Type: Application
    Filed: March 2, 2021
    Publication date: December 15, 2022
    Inventors: John D. Perreault, Andrew Huibers
  • Publication number: 20220319453
    Abstract: A display system including a tracking subsystem configured to track one of a pose of a head of a viewer or a pose of an eye of the viewer. The display system further includes an image correction module configured to, for each pixel of at least a subset of pixels of an input image, determine a pixel view angle for the pixel based on the pose of the head or the pose of the eye, determine a corrected pixel value based on an input pixel value of the pixel in the input image and based on the pixel view angle; and provide the corrected pixel value for the pixel in an angle-corrected image corresponding to the input image. The display system further includes a display panel to display the angle-corrected image.
    Type: Application
    Filed: December 12, 2019
    Publication date: October 6, 2022
    Inventors: Patrick Llull, John D. Perreault, Andrew Huibers
  • Patent number: 10880582
    Abstract: An example telepresence terminal includes a display, an image sensor, an infrared emitter, and an infrared depth sensor. The terminal may determine image data using visible light emitted by the infrared emitter and captured by the image sensor and determine depth data using infrared light captured by the infrared depth sensor. The terminal may also communicate the depth data and the image data to a remote telepresence terminal and receive remote image data and remote depth data. The terminal may also generate a first display image using the lenticular display based on the remote image data that is viewable from a first viewing location and generate a second display image using the lenticular display based on the remote image data and the remote depth data that is viewable from a second viewing location.
    Type: Grant
    Filed: July 8, 2020
    Date of Patent: December 29, 2020
    Assignee: Google LLC
    Inventors: Daniel Goldman, Jason Lawrence, Andrew Huibers, Andrew Ian Russell, Steven M. Seitz
  • Publication number: 20200344500
    Abstract: An example telepresence terminal includes a display, an image sensor, an infrared emitter, and an infrared depth sensor. The terminal may determine image data using visible light emitted by the infrared emitter and captured by the image sensor and determine depth data using infrared light captured by the infrared depth sensor. The terminal may also communicate the depth data and the image data to a remote telepresence terminal and receive remote image data and remote depth data. The terminal may also generate a first display image using the lenticular display based on the remote image data that is viewable from a first viewing location and generate a second display image using the lenticular display based on the remote image data and the remote depth data that is viewable from a second viewing location.
    Type: Application
    Filed: July 8, 2020
    Publication date: October 29, 2020
    Inventors: Daniel Goldman, Jason Lawrence, Andrew Huibers, Andrew Ian Russell, Steven M. Seitz
  • Patent number: 10764533
    Abstract: A computer workstation includes a curved autostereoscopic display having one or more display regions. The workstation further includes one or more image capturing devices to capture images (e.g., two-dimensional images and depth information) of a user of the workstation, and also includes an eye-tracking module to track the positions of the user's eyes as she uses the workstation. Based on the captured imagery, the workstation generates a 3D model of the user for communication to other remote workstations via a network. The workstation receives 3D models of the users of the remote workstations via the network. Based on the received 3D models and the detected eye positions of the user, the workstation generates frames for display at the curved autostereoscopic display.
    Type: Grant
    Filed: November 9, 2018
    Date of Patent: September 1, 2020
    Assignee: GOOGLE LLC
    Inventors: Andrew Russell, Andrew Huibers
  • Patent number: 10750210
    Abstract: An example telepresence terminal includes a lenticular display, an image sensor, an infrared emitter, and an infrared depth sensor. The terminal may determine image data using visible light emitted by the infrared emitter and captured by the image sensor and determine depth data using infrared light captured by the infrared depth sensor. The terminal may also communicate the depth data and the image data to a remote telepresence terminal and receive remote image data and remote depth data. The terminal may also generate a first display image using the lenticular display based on the remote image data that is viewable from a first viewing location and generate a second display image using the lenticular display based on the remote image data and the remote depth data that is viewable from a second viewing location.
    Type: Grant
    Filed: June 17, 2019
    Date of Patent: August 18, 2020
    Assignee: GOOGLE LLC
    Inventors: Daniel Goldman, Jason Lawrence, Andrew Huibers, Andrew Ian Russell, Steven M. Seitz
  • Publication number: 20200154076
    Abstract: A computer workstation includes a curved autostereoscopic display having one or more display regions. The workstation further includes one or more image capturing devices to capture images (e.g., two-dimensional images and depth information) of a user of the workstation, and also includes an eye-tracking module to track the positions of the user's eyes as she uses the workstation. Based on the captured imagery, the workstation generates a 3D model of the user for communication to other remote workstations via a network. The workstation receives 3D models of the users of the remote workstations via the network. Based on the received 3D models and the detected eye positions of the user, the workstation generates frames for display at the curved autostereoscopic display.
    Type: Application
    Filed: November 9, 2018
    Publication date: May 14, 2020
    Inventors: Andrew Russell, Andrew Huibers
  • Publication number: 20190306541
    Abstract: An example telepresence terminal includes a lenticular display, an image sensor, an infrared emitter, and an infrared depth sensor. The terminal may determine image data using visible light emitted by the infrared emitter and captured by the image sensor and determine depth data using infrared light captured by the infrared depth sensor. The terminal may also communicate the depth data and the image data to a remote telepresence terminal and receive remote image data and remote depth data. The terminal may also generate a first display image using the lenticular display based on the remote image data that is viewable from a first viewing location and generate a second display image using the lenticular display based on the remote image data and the remote depth data that is viewable from a second viewing location.
    Type: Application
    Filed: June 17, 2019
    Publication date: October 3, 2019
    Inventors: Daniel Goldman, Jason Lawrence, Andrew Huibers, Andrew Ian Russell, Steven M. Seitz
  • Patent number: 10327014
    Abstract: An example telepresence terminal includes a lenticular display, an image sensor, an infrared emitter, and an infrared depth sensor. The terminal may determine image data using visible light emitted by the infrared emitter and captured by the image sensor and determine depth data using infrared light captured by the infrared depth sensor. The terminal may also communicate the depth data and the image data to a remote telepresence terminal and receive remote image data and remote depth data. The terminal may also generate a first display image using the lenticular display based on the remote image data that is viewable from a first viewing location and generate a second display image using the lenticular display based on the remote image data and the remote depth data that is viewable from a second viewing location.
    Type: Grant
    Filed: September 8, 2017
    Date of Patent: June 18, 2019
    Assignee: GOOGLE LLC
    Inventors: Daniel Goldman, Jason Lawrence, Andrew Huibers, Andrew Ian Russell, Steven M. Seitz
  • Publication number: 20180077384
    Abstract: An example telepresence terminal includes a lenticular display, an image sensor, an infrared emitter, and an infrared depth sensor. The terminal may determine image data using visible light emitted by the infrared emitter and captured by the image sensor and determine depth data using infrared light captured by the infrared depth sensor. The terminal may also communicate the depth data and the image data to a remote telepresence terminal and receive remote image data and remote depth data. The terminal may also generate a first display image using the lenticular display based on the remote image data that is viewable from a first viewing location and generate a second display image using the lenticular display based on the remote image data and the remote depth data that is viewable from a second viewing location.
    Type: Application
    Filed: September 8, 2017
    Publication date: March 15, 2018
    Inventors: Daniel Goldman, Jason Lawrence, Andrew Huibers, Andrew Ian Russell
  • Patent number: 9854160
    Abstract: Implementations of the disclosed technology include techniques for autonomously collecting image data, and generating photo summaries based thereon. In some implementations, a plurality of images may be autonomously sampled from an available stream of image data. For example, a camera application of a smartphone or other mobile computing device may present a live preview based on a stream of data from an image capture device. The live stream of image capture data may be sampled and the most interesting photos preserved for further filtering and presentation. The preserved photos may be further winnowed as a photo session continues and an image object generated summarizing the remaining photos. Accordingly, image capture data may be autonomously collected, filtered, and formatted to enable a photographer to see what moments they missed manually capturing during a photo session.
    Type: Grant
    Filed: October 21, 2016
    Date of Patent: December 26, 2017
    Assignee: Google LLC
    Inventors: Rodrigo Lima Carceroni, Marius Renn, Alan Newberger, Sascha Häberling, Jacob Mintz, Andrew Huibers
  • Publication number: 20170041532
    Abstract: Implementations of the disclosed technology include techniques for autonomously collecting image data, and generating photo summaries based thereon. In some implementations, a plurality of images may be autonomously sampled from an available stream of image data. For example, a camera application of a smartphone or other mobile computing device may present a live preview based on a stream of data from an image capture device. The live stream of image capture data may be sampled and the most interesting photos preserved for further filtering and presentation. The preserved photos may be further winnowed as a photo session continues and an image object generated summarizing the remaining photos. Accordingly, image capture data may be autonomously collected, filtered, and formatted to enable a photographer to see what moments they missed manually capturing during a photo session.
    Type: Application
    Filed: October 21, 2016
    Publication date: February 9, 2017
    Inventors: Rodrigo Lima Carceroni, Marius Renn, Alan Newberger, Sascha Häberling, Jacob Mintz, Andrew Huibers
  • Patent number: 9479694
    Abstract: Implementations of the disclosed technology include techniques for autonomously collecting image data, and generating photo summaries based thereon. In some implementations, a plurality of images may be autonomously sampled from an available stream of image data. For example, a camera application of a smartphone or other mobile computing device may present a live preview based on a stream of data from an image capture device. The live stream of image capture data may be sampled and the most interesting photos preserved for further filtering and presentation. The preserved photos may be further winnowed as a photo session continues and an image object generated summarizing the remaining photos. Accordingly, image capture data may be autonomously collected, filtered, and formatted to enable a photographer to see what moments they missed manually capturing during a photo session.
    Type: Grant
    Filed: October 28, 2014
    Date of Patent: October 25, 2016
    Assignee: Google Inc.
    Inventors: Rodrigo Lima Carceroni, Marius Renn, Alan Newberger, Sascha Häberling, Jacob Mintz, Andrew Huibers
  • Publication number: 20160119536
    Abstract: Implementations of the disclosed technology include techniques for autonomously collecting image data, and generating photo summaries based thereon. In some implementations, a plurality of images may be autonomously sampled from an available stream of image data. For example, a camera application of a smartphone or other mobile computing device may present a live preview based on a stream of data from an image capture device. The live stream of image capture data may be sampled and the most interesting photos preserved for further filtering and presentation. The preserved photos may be further winnowed as a photo session continues and an image object generated summarizing the remaining photos. Accordingly, image capture data may be autonomously collected, filtered, and formatted to enable a photographer to see what moments they missed manually capturing during a photo session.
    Type: Application
    Filed: October 28, 2014
    Publication date: April 28, 2016
    Inventors: Rodrigo Lima Carceroni, Marius Renn, Alan Newberger, Sascha Häberling, Jacob Mintz, Andrew Huibers
  • Patent number: 7751113
    Abstract: Disclosed herein is a micromirror device having a reflective mirror plate with reduced dimensions. The micromirror device can be a member of an array of micromirror devices for use in optical signal modulations, such as display applications and optical signal switching applications.
    Type: Grant
    Filed: January 23, 2007
    Date of Patent: July 6, 2010
    Assignee: Texas Instruments Incorporated
    Inventor: Andrew Huibers
  • Patent number: 7697193
    Abstract: A micromirror of a micromirror array of a spatial light modulator used in display systems comprises a mirror plate attached to a hinge that is supported by two posts formed on a substrate. Also the mirror plate is operable to rotate along a rotation axis that is parallel to but offset from a diagonal of the mirror plate when viewed from the top. An imaginary line connecting the two posts is not parallel to either diagonal of the mirror plate.
    Type: Grant
    Filed: September 11, 2007
    Date of Patent: April 13, 2010
    Assignee: Texas Instruments Incorporated
    Inventors: Andrew Huibers, Satyadev Patel
  • Publication number: 20100079581
    Abstract: An imaging device capable of capturing depth information or surface profiles of objects is disclosed herein. The imaging device uses an enclosed flashing unit to project a sequence of structured light patterns onto an object and captures the light patterns reflected from the surfaces of the object by using an image sensor that is enclosed in the imaging device. The imaging device is capable of capturing an image of an object such that the captured image is comprised of one or more color components of a two-dimensional image of the object and a depth component that specifies the depth information of the object.
    Type: Application
    Filed: September 30, 2008
    Publication date: April 1, 2010
    Applicant: Texas Instruments Incorporated
    Inventors: Andrew Ian Russell, David Foster Lieb, Andrew Huibers