Patents by Inventor Andrew Humphris

Andrew Humphris has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20150020244
    Abstract: Apparatus for illuminating a probe of a probe microscope. A lens is arranged to receive a beam and focus it onto the probe. A scanning system varies over time the angle of incidence at which the beam enters the lens relative to its optical axis. The scanning system is typically arranged to move the beam so as to track movement of the probe, thereby maintaining the location on the probe at which the beam is focused. The scanning system may comprise a beam steering mirror which reflects the beam towards the lens; and a mirror actuator for rotating the beam steering mirror.
    Type: Application
    Filed: January 29, 2013
    Publication date: January 15, 2015
    Inventors: Andrew Humphris, Bin Zhao
  • Publication number: 20150013035
    Abstract: A method of driving a probe of a scanning probe microscope. The intensities of first and second radiation beams are modulated; and the beams are directed simultaneously onto the probe whereby each beam heats the probe and causes the probe to deform, typically by the photothermal effect. The optical system is arranged to direct the centres of the beams onto different locations on the probe. This enables the location of each beam to be chosen to optimise its effect. A lens receives the first and second beams and focuses them onto the probe. A beam combiner is arranged to receive and combine the beams and direct the combined beams towards the probe.
    Type: Application
    Filed: January 29, 2013
    Publication date: January 8, 2015
    Inventors: Andrew Humphris, Bin Zhao
  • Patent number: 8910311
    Abstract: A probe assembly is for use in a scanning probe microscope. The probe assembly includes a carrier having a plurality of at least three substantially identical probes, each probe having a tip that is located on a plane that is common to the plurality of probe tips and that is movable from this plane. The assembly also includes addressing means adapted to select one of the plurality of probes for relative movement with respect to a majority of the remainder of the probes. Such an assembly, with its potential to facilitate rapid, perhaps automated, replacement of a used probe, lends itself to use in high-speed scanning apparatus.
    Type: Grant
    Filed: October 31, 2007
    Date of Patent: December 9, 2014
    Assignee: Infinitesima Ltd.
    Inventors: Andrew Humphris, David Catto
  • Publication number: 20140289911
    Abstract: A method of investigating a sample surface. A probe is brought into close proximity with a first sample and scanned across the first sample. A response of the probe to its interaction with the sample is monitored using a detection system and a first data set is collected indicative of said response. The probe and/or sample is tilted through a tilt angle. The probe is scanned across the first sample or across a second sample after the tilting step, and a response of the probe to its interaction with the scanned sample is monitored using a detection system and a second data set is collected indicative of said response. The method includes the additional step of analysing the first data set prior to tilting the probe and/or sample in order to determine the tilt angle.
    Type: Application
    Filed: October 4, 2012
    Publication date: September 25, 2014
    Inventor: Andrew Humphris
  • Patent number: 8732861
    Abstract: A control system 32, 75 is for use with a scanning probe microscope of a type in which measurement data is collected at positions within a scan pattern described as a probe and sample are moved relative to each other. The control system is used in conjunction with a position detection system 34 that measures the position of at least one of the probe and sample such that their relative spatial location (x, y) is determined. Measurement data may then be correlated with empirically-determined spatial locations in constructing an image. The use of empirical location data means that image quality is not limited by the ability of a microscope scanning system to control mechanically the relative location of probe and sample.
    Type: Grant
    Filed: October 19, 2012
    Date of Patent: May 20, 2014
    Assignee: Infinitesima Ltd.
    Inventors: Andrew Humphris, David Catto
  • Publication number: 20140026263
    Abstract: A scanning probe microscope comprising a probe that is mechanically responsive to a driving force. A signal generator provides a drive signal to an actuator that generates the driving force, the drive signal being such as to cause the actuator to move the probe repeatedly towards and away from a sample. A detection system is arranged to output a height signal indicative of a path difference between light reflected from the probe and a height reference beam. Image processing apparatus is arranged to use the height signal to form an image of the sample. Signal processing apparatus is arranged to monitor the probe as the probe approaches a sample and to detect a surface position at which the probe interacts with the sample. In response to detection of the surface position, the signal processing apparatus prompts the signal generator to modify the drive signal.
    Type: Application
    Filed: January 31, 2012
    Publication date: January 23, 2014
    Applicant: Infinitesima Limited
    Inventor: Andrew Humphris
  • Patent number: 8528110
    Abstract: A probe detection system (74) for use with a scanning probe microscope comprises both a height detection system (88) and deflection detection system (28). As a sample surface is scanned, light reflected from a microscope probe (16) is separated into two components. A first component (84) is analysed by the deflection detection system (28) and is used in a feedback system that maintains the average probe deflection substantially constant during the scan. The second component (86) is analysed by the height detection system (88) from which an indication of the height of the probe above a fixed reference point, and thereby an image of the sample surface, is obtained. Such a dual detection system is particularly suited for use in fast scanning applications in which the feedback system is unable to respond at the rate required to adjust probe height between pixel positions.
    Type: Grant
    Filed: June 8, 2009
    Date of Patent: September 3, 2013
    Assignee: Infinitesima Ltd.
    Inventor: Andrew Humphris
  • Patent number: 8479310
    Abstract: A dynamic probe detection system (29,32) is for use with a scanning probe microscope of the type that includes a probe (18) that is moved repeatedly towards and away from a sample surface. As a sample surface is scanned, an interferometer (88) generates an output height signal indicative of a path difference between light reflected from the probe (80a,80b,80c) and a height reference beam. Signal processing apparatus monitors the height signal and derives a measurement for each oscillation cycle that is indicative of the height of the probe. This enables extraction of a measurement that represents the height of the sample, without recourse to averaging or filtering, that may be used to form an image of the sample. The detection system may also include a feedback mechanism that is operable to maintain the average value of a feedback parameter at a set level.
    Type: Grant
    Filed: December 11, 2009
    Date of Patent: July 2, 2013
    Assignee: Infinitesima Ltd.
    Inventor: Andrew Humphris
  • Publication number: 20130014296
    Abstract: A probe assembly for use with a scanning probe microscope includes a carrier supporting at least two probes mounted on a tilt stage arranged to tilt the carrier about an axis. The probes may be distributed on one or more surfaces. In use, the tilt stage operates either as a selection device, orienting a selected probe or surface towards a sample, and/or as an alignment tool, adjusting a planar array of probes such that they are better aligned with the sample. This offers the potential for automated exchange of probes, with increased speed and accuracy, during microscope operation.
    Type: Application
    Filed: March 29, 2011
    Publication date: January 10, 2013
    Applicant: INFINITESIMA LTD
    Inventor: Andrew Humphris
  • Patent number: 8296856
    Abstract: A control system (32, 75) is for use with a scanning probe microscope of a type in which measurement data is collected at positions within a scan pattern described as a probe and sample are moved relative to each other. The control system is used in conjunction with a position detection system (34) that measures the position of at least one of the probe and sample such that their relative spatial location (x, y) is determined. Measurement data may then be correlated with empirically-determined spatial locations in constructing an image. The use of empirical location data means that image quality is not limited by the ability of a microscope scanning system to control mechanically the relative location of probe and sample.
    Type: Grant
    Filed: February 4, 2010
    Date of Patent: October 23, 2012
    Assignee: Infinitesima Ltd.
    Inventors: Andrew Humphris, David Catto
  • Patent number: 8220066
    Abstract: A The local probe microscopy apparatus (1) comprises a probe (3) with translation stages (5a, 5b) for controlling the position of the probe (3) relative to a sample surface. The probe (3) has a feedback mechanism (6, 5 7) for maintaining the deflection of the probe and a height measuring system (9) which includes means for compensating for environmental noise. The local probe microscopy apparatus is particularly suitable for use as a wafer inspection tool in a wafer fabrication plant where the inspection tool is liable to be exposed to significant mechanical vibration.
    Type: Grant
    Filed: August 4, 2008
    Date of Patent: July 10, 2012
    Assignee: Infinitesima Ltd.
    Inventor: Andrew Humphris
  • Publication number: 20110296561
    Abstract: A control system (32, 75) is for use with a scanning probe microscope of a type in which measurement data is collected at positions within a scan pattern described as a probe and sample are moved relative to each other. The control system is used in conjunction with a position detection system (34) that measures the position of at least one of the probe and sample such that their relative spatial location (x, y) is determined. Measurement data may then be correlated with empirically-determined spatial locations in constructing an image. The use of empirical location data means that image quality is not limited by the ability of a microscope scanning system to control mechanically the relative location of probe and sample.
    Type: Application
    Filed: February 4, 2010
    Publication date: December 1, 2011
    Applicant: INFINITESIMA LTD
    Inventors: Andrew Humphris, David Catto
  • Publication number: 20110247106
    Abstract: A dynamic probe detection system (29,32) is for use with a scanning probe microscope of the type that includes a probe (18) that is moved repeatedly towards and away from a sample surface. As a sample surface is scanned, an interferometer (88) generates an output height signal indicative of a path difference between light reflected from the probe (80a,80b,80c) and a height reference beam. Signal processing apparatus monitors the height signal and derives a measurement for each oscillation cycle that is indicative of the height of the probe. This enables extraction of a measurement that represents the height of the sample, without recourse to averaging or filtering, that may be used to form an image of the sample. The detection system may also include a feedback mechanism that is operable to maintain the average value of a feedback parameter at a set level.
    Type: Application
    Filed: December 11, 2009
    Publication date: October 6, 2011
    Applicant: INFINITESIMA LTD
    Inventor: Andrew Humphris
  • Publication number: 20110167525
    Abstract: A probe detection system (74) for use with a scanning probe microscope comprises both a height detection system (88) and deflection detection system (28). As a sample surface is scanned, light reflected from a microscope probe (16) is separated into two components. A first component (84) is analysed by the deflection detection system (28) and is used in a feedback system that maintains the average probe deflection substantially constant during the scan. The second component (86) is analysed by the height detection system (88) from which an indication of the height of the probe above a fixed reference point, and thereby an image of the sample surface, is obtained. Such a dual detection system is particularly suited for use in fast scanning applications in which the feedback system is unable to respond at the rate required to adjust probe height between pixel positions.
    Type: Application
    Filed: June 8, 2009
    Publication date: July 7, 2011
    Applicant: INFINITESIMA LTD
    Inventor: Andrew Humphris
  • Publication number: 20110138506
    Abstract: A method of probe alignment is described in which an interrogating light beam is aligned with the probe of a scanning probe microscope. The methods described ensure that the light beam is positioned as closely as possible to a point directly above the probe tip. This improves image quality by removing variations that may arise if cantilever deflection is allowed to vary during the course of a scan and/or if scanning at high scanning speeds that may excite transient motion of the probe.
    Type: Application
    Filed: June 8, 2009
    Publication date: June 9, 2011
    Applicant: INFINITESIMA LTD
    Inventor: Andrew Humphris
  • Publication number: 20100235955
    Abstract: A The local probe microscopy apparatus (1) comprises a probe (3) with translation stages (5a, 5b) for controlling the position of the probe (3) relative to a sample surface. The probe (3) has a feedback mechanism (6, 5 7) for maintaining the deflection of the probe and a height measuring system (9) which includes means for compensating for environmental noise. The local probe microscopy apparatus is particularly suitable for use as a wafer inspection tool in a wafer fabrication plant where the inspection tool is liable to be exposed to significant mechanical vibration.
    Type: Application
    Filed: August 4, 2008
    Publication date: September 16, 2010
    Applicant: INFINITESIMA LTD
    Inventor: Andrew Humphris
  • Publication number: 20100186132
    Abstract: A probe assembly is for use in a scanning probe microscope. The probe assembly includes a carrier having a plurality of at least three substantially identical probes, each probe having a tip that is located on a plane that is common to the plurality of probe tips and that is movable from this plane. The assembly also includes addressing means adapted to select one of the plurality of probes for relative movement with respect to a majority of the remainder of the probes. Such an assembly, with its potential to facilitate rapid, perhaps automated, replacement of a used probe, lends itself to use in high-speed scanning apparatus.
    Type: Application
    Filed: October 31, 2007
    Publication date: July 22, 2010
    Applicant: INFINITESIMA LTD
    Inventors: Andrew Humphris, David Catto
  • Publication number: 20070024295
    Abstract: A probe for an atomic force microscope is adapted such that, as a sample is scanned, it experiences a biasing force urging the probe towards the sample. This improves probe tracking of the sample surface and faster scans are possible. This is achieved by either including a biasing element which is responsive to an externally applied force, on the probe and/or reducing the quality factor of a supporting beam. This biasing element may, for example, be a magnet or an electrically-conducting element. The quality factor may be reduced by coating the beam with a mechanical-energy dissipating material.
    Type: Application
    Filed: July 15, 2004
    Publication date: February 1, 2007
    Applicant: UNIVERSITY OF BRISTOL
    Inventors: Andrew Humphris, Jamie Hobbs, Mervyn Miles