Patents by Inventor Andrew Hunt

Andrew Hunt has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10529117
    Abstract: In one embodiment, a computing system may receive a focal surface map, which may be specified by an application. The system may determine an orientation in a 3D space based on sensor data generated by a virtual reality device. The system may generate first coordinates in the 3D space based on the determined orientation and generate second coordinates using the first coordinates and the focal surface map. Each of the first coordinates is associated with one of the second coordinates. For each of the first coordinates, the system may determine visibility of one or more objects defined within the 3D space by projecting a ray from the first coordinate through the associated second coordinate to test for intersection with the one or more objects. The system may generate an image of the one or more objected based on the determined visibility of the one or more objects.
    Type: Grant
    Filed: April 16, 2018
    Date of Patent: January 7, 2020
    Assignee: Facebook Technologies, LLC
    Inventors: Warren Andrew Hunt, Anton S. Kaplanyan, Michael Mara, Alexander Nankervis
  • Publication number: 20200005626
    Abstract: Pest control systems and methods are described. The systems comprise a portable electronic device which is configured to identify one or more of multiple PCDs within a range of a portable electric device which have been activated, and to provide an indication to a user corresponding to at least one of the identified activated PCDs.
    Type: Application
    Filed: July 1, 2019
    Publication date: January 2, 2020
    Inventors: Joe Triventi, Volodimir Bondarenko, Gavin Singh, Clemente Receno, Peter Zosimadis, Mike Zosimadis, Andrew Hunt
  • Publication number: 20200003670
    Abstract: In order to measure a fluid flow or flow conditions of a fluid flow through an apparatus, electrodes are provided across which capacitance values are determined. The capacitances are used in conjunction with a predetermined model to determine a revised model for the system. If the modelled to be satisfactory, then the values representative of the flow conditions are output. If it is not, then the model is tuned to reduce the error. A novel arrangement of electrodes is also provided along with apparatus embodying the method. The invention also provides a way of determining fluid properties, for example, density, volume present contained within a vessel or tank whether flowing or stationary.
    Type: Application
    Filed: September 4, 2019
    Publication date: January 2, 2020
    Inventors: Andrew Hunt, Richard Foster-Turner
  • Publication number: 20190378321
    Abstract: In one embodiment, a computing system may determine a pixel area in a two-dimensional coordinate system associated with a display. The system may project the pixel area into a three-dimensional coordinate system to determine a projected area in the three-dimensional coordinate system. Based on the projected area, the system may access a portion of an analytical definition of a glyph, the portion of the analytical definition defining one or more areas of the glyph. The system may compute a coverage proportion of the pixel area that overlaps with the one or more areas of the glyph. The system may then determine a color for the pixel area based on the coverage proportion.
    Type: Application
    Filed: August 23, 2019
    Publication date: December 12, 2019
    Inventor: Warren Andrew Hunt
  • Publication number: 20190371569
    Abstract: Apparatuses for collection of wavelength resolved and angular resolved cathodoluminescence (WRARCL) emitted from a sample exposed to an electron beam (e-beam) or other excitation beams are described. Cathodoluminescence light (CL) may be emitted from a sample at specific angles relative to the excitation beam and analyzed with respect to light-emitting and other optical phenomena. The described embodiments allow collection of WRARCL data more efficiently and with significantly fewer aberrations than existing systems.
    Type: Application
    Filed: May 30, 2019
    Publication date: December 5, 2019
    Inventors: Michael Bertilson, John Andrew Hunt, David J. Stowe
  • Publication number: 20190348257
    Abstract: An apparatus for collection, distribution, and analysis of cathodoluminescence (CL) and other light signals in an electron microscope is provided. The optical hub, utilizing a linear-translating fold-mirror and mounted to the electron microscope, is used to receive essentially collimated light collected from a collection-mirror and efficiently route the collected light to a plurality of light-analysis instruments. The linear-translating fold-mirror can provide fine positional alignment of the light signal, and in an aspect of the invention can be used to select or scan a portion of the collected light-pattern into an optical slit or aperture. In one aspect, the optical hub includes a light filter mechanism that can track the movement of the fold-mirror. In an aspect, the optical hub also controls the positioning of the collection-mirror in proximity to the specimen being analyzed.
    Type: Application
    Filed: May 10, 2019
    Publication date: November 14, 2019
    Inventors: John Andrew Hunt, Michael Bertilson, Tom Worsley
  • Publication number: 20190329846
    Abstract: A turbine assembly (200) for location in river or sea locations having unidirectional or bidirectional flow. The as- sembly (200) has: a support structure (226) and a first turbine system, supported by the support structure (226). The first turbine system has a centre of mass and being pivotally connected to the support structure (226) so that the first turbine system is rotatable, relative to the support structure, about a centre of rotation. The first turbine system includes a first flowing-water driveable turbine (216) for generating power from water flow. The first turbine (216) has an operational axis (322), and is designed for optimum power output when local water flow is aligned with the operational axis (322). The wherein the centre of rotation is spaced away from the centre of mass of the first turbine system in a direction parallel to the operational axis of the turbine.
    Type: Application
    Filed: January 20, 2017
    Publication date: October 31, 2019
    Inventors: Jason HAYMAN, Christopher BURDEN, Andrew HUNT
  • Patent number: 10460500
    Abstract: In one embodiment, a computing system may determine a pixel area in a display coordinate system and project it into a three-dimensional coordinate system to determine a projected area. Based on the projected area, the system may determine a portion of a data structure that contains an analytical definition of a glyph in a two-dimensional coordinate system. The system may access a portion of the analytical definition associated with the selected portion of the data structure, the portion of the analytical definition defining one or more areas of the glyph. The system may project the portion of the analytical definition into the display coordinate system and compute a coverage proportion of the pixel area that overlaps with one or more areas defined by the projected portion of the analytical definition. Based on the coverage, the system may determine a color for the pixel and render the glyph.
    Type: Grant
    Filed: April 13, 2018
    Date of Patent: October 29, 2019
    Assignee: Facebook Technologies, LLC
    Inventor: Warren Andrew Hunt
  • Patent number: 10461781
    Abstract: For some applications such as high-speed communication over short-reach links, the complexity and associated high latency provided by existing modulators may be unsuitable. According to an aspect, the present disclosure provides a modulator that can reduce latency for applications such as 40 G/100 G communication over copper cables or SMF. The modulator has a symbol mapper for mapping a bit stream into symbols, and a multi-level encoder including an inner encoder and an outer encoder for encoding only a portion of the bit stream. In some implementations, the multi-level encoder is configured such that an information block size of the inner encoder is small and matches a field size of the outer encoder. Therefore, components that would be used to accommodate larger block sizes can be omitted. The effect is that complexity and latency can be reduced. According to another aspect, the present disclosure provides a demodulator that is complementary to the modulator.
    Type: Grant
    Filed: June 18, 2018
    Date of Patent: October 29, 2019
    Assignee: INPHI CORPORATION
    Inventors: Benjamin Smith, Arash Farhoodfar, Stewart Crozier, Frank R. Kschischang, Andrew Hunt
  • Publication number: 20190318530
    Abstract: In one embodiment, a computing system may determine a first orientation in a 3D space based on first sensor data generated at a first time. The system may determine a first visibility of an object in the 3D space by projecting rays based on the first orientation to test for intersection. The system may generate first lines of pixels based on the determined first visibility and output the first lines of pixels for display. The system may determine a second orientation based on second sensor data generated at a second time. The system may determine a second visibility of the object by projected rays based on the second orientation to test for intersection. The system may generate second lines of pixels based on the determined second visibility and output the second lines of pixels for display. The second lines of pixels are displayed concurrently with the first lines of pixels.
    Type: Application
    Filed: April 16, 2018
    Publication date: October 17, 2019
    Inventors: Warren Andrew Hunt, Anton S. Kaplanyan, Michael Mara, Alexander Nankervis
  • Publication number: 20190318528
    Abstract: In one embodiment, a method for determine visibility may perform intersection tests using block beams, tile beams, and rays. First, a computing system may project a block beam to test for intersection with a first bounding volume (BV) in a bounding volume hierarchy. If the beam fully contains BV, the system may test for more granular intersections with the first BV by projecting smaller tile beams contained within the block beam. Upon determining that the first BV partially intersects a tile beam, the system may project the tile beam against a second BV contained within the first BV. If the tile beam fully contains the second BV, the system may test for intersection using rays contained within the tile beam. The system may project procedurally-generated rays to test whether they intersect with objects contained within the second BV. Information associated with intersections may be used to render a computer-generated scene.
    Type: Application
    Filed: April 16, 2018
    Publication date: October 17, 2019
    Inventors: Warren Andrew Hunt, Anton S. Kaplanyan, Michael Mara, Alexander Nankervis
  • Publication number: 20190318529
    Abstract: In one embodiment, a computer system may determine an orientation in a 3D space based on sensor data generated by a virtual reality device. The system may generate ray footprints in the 3D space based on the determined orientation. For at least one of the ray footprints, the system may identify a corresponding number of subsamples to generate for that ray footprint and generate one or more coordinates in the ray footprint based on the corresponding number of subsamples. The system may determine visibility of one or more objects defined within the 3D space by projecting a ray from each of the one or more coordinates to test for intersection with the one or more objects. The system may generate an image of the one or more objected based on the determined visibility of the one or more objects.
    Type: Application
    Filed: April 16, 2018
    Publication date: October 17, 2019
    Inventors: Warren Andrew Hunt, Anton S. Kaplanyan, Michael Mara, Alexander Nankervis
  • Publication number: 20190318526
    Abstract: In one embodiment, a computing system may receive a focal surface map, which may be specified by an application. The system may determine an orientation in a 3D space based on sensor data generated by a virtual reality device. The system may generate first coordinates in the 3D space based on the determined orientation and generate second coordinates using the first coordinates and the focal surface map. Each of the first coordinates is associated with one of the second coordinates. For each of the first coordinates, the system may determine visibility of one or more objects defined within the 3D space by projecting a ray from the first coordinate through the associated second coordinate to test for intersection with the one or more objects. The system may generate an image of the one or more objected based on the determined visibility of the one or more objects.
    Type: Application
    Filed: April 16, 2018
    Publication date: October 17, 2019
    Inventors: Warren Andrew Hunt, Anton S. Kaplanyan, Michael Mara, Alexander Nankervis
  • Publication number: 20190316943
    Abstract: A monitoring apparatus for monitoring a multiphase flow in a pipe, the apparatus comprising: a first monitoring module coupled to the pipe and adapted to provide first output data representing a respective concentration of one phase of a plurality of phases, or a mixture of at least two of the phases, in the multiphase flow by processing at least one first variable representing electrical permittivity of one phase or a mixture of at least two of the phases of the multiphase flow; a second monitoring module coupled to the pipe and adapted to provide second output data representing a respective concentration of one phase, or a mixture of at least two of the phases, of the plurality of phases in the multiphase flow by processing at least one second variable representing electrical conductivity of one phase or a mixture of at least two of the phases of the multiphase flow; and a third monitoring module coupled to the pipe and adapted to provide third output data representing a respective velocity of at least one
    Type: Application
    Filed: June 24, 2019
    Publication date: October 17, 2019
    Inventors: Dominic Patrick McCann, Kevin John Forbes, Andrew Hunt
  • Publication number: 20190310120
    Abstract: A monitoring apparatus for monitoring a multiphase flow in a pipe, the apparatus comprising: a first monitoring module coupled to the pipe and adapted to provide first output data representing a respective concentration of one phase of a plurality of phases, or a mixture of at least two of the phases, in the multiphase flow by processing at least one first variable representing electrical permittivity of one phase or a mixture of at least two of the phases of the multiphase flow; a second monitoring module coupled to the pipe and adapted to provide second output data representing a respective concentration of one phase, or a mixture of at least two of the phases, of the plurality of phases in the multiphase flow by processing at least one second variable representing electrical conductivity of one phase or a mixture of at least two of the phases of the multiphase flow; and a third monitoring module coupled to the pipe and adapted to provide third output data representing a respective velocity of at least one
    Type: Application
    Filed: June 24, 2019
    Publication date: October 10, 2019
    Inventors: Dominic Patrick McCann, Kevin John Forbes, Andrew Hunt
  • Publication number: 20190295503
    Abstract: The apparatus may include a display device that includes an integral display which receives bit-depth assignment data and configures, based on the bit-depth assignment data, the integral display to display image data at differing bit depths within various display regions of the integral display. This may cause the display device to consume a lower proportion of image data to drive display regions of the integral display that are configured to display image data at lower bit depths and maintain higher image quality within display regions of the integral display that are configured to display image data at higher bit depths. The apparatus may also reconfigure the integral display in response to receiving updated bit-depth assignment data. Various other methods, systems, and computer-readable media are also disclosed.
    Type: Application
    Filed: June 11, 2018
    Publication date: September 26, 2019
    Inventors: Andrew John Ouderkirk, Jasmine Soria Sears, James Ronald Bonar, Warren Andrew Hunt, Behnam Bastani
  • Publication number: 20190257284
    Abstract: The invention relates to a ducted wind turbine having a turbine rotor assembly which extracts kinetic energy from air flowing there past. The rotor assembly includes a plurality of rotor blades having rotor tips at their outermost ends which define a rotor tip sweep circumference. A duct assembly at least partially surrounds said rotor tip sweep circumference and a base platform supports the ducted wind turbine. The duct assembly is mounted on the base platform by way of a weathervane bearing arrangement such that the duct assembly may weathervane around the turbine rotor assembly in response to changes in wind direction. A semi-submersible support platform, wave energy capture apparatus, torsional bearing mechanism and a latticework wind turbine tower associated with the ducted wind turbine are also provided.
    Type: Application
    Filed: October 20, 2017
    Publication date: August 22, 2019
    Applicant: SEAMACH LTD
    Inventor: Glenn Andrew Hunt Whitfield
  • Patent number: 10378941
    Abstract: A monitoring apparatus for monitoring a multiphase flow in a pipe, the apparatus comprising: a first monitoring module coupled to the pipe and adapted to provide first output data representing a respective concentration of one phase of a plurality of phases, or a mixture of at least two of the phases, in the multiphase flow by processing at least one first variable representing electrical permittivity of one phase or a mixture of at least two of the phases of the multiphase flow; a second monitoring module coupled to the pipe and adapted to provide second output data representing a respective concentration of one phase, or a mixture of at least two of the phases, of the plurality of phases in the multiphase flow by processing at least one second variable representing electrical conductivity of one phase or a mixture of at least two of the phases of the multiphase flow; and a third monitoring module coupled to the pipe and adapted to provide third output data representing a respective velocity of at least one
    Type: Grant
    Filed: April 30, 2014
    Date of Patent: August 13, 2019
    Assignee: iPhase Limited
    Inventors: Dominic Patrick McCann, Kevin John Forbes, Andrew Hunt
  • Patent number: 10320425
    Abstract: In staircase forward error correction coding, a stream of data symbols are mapped to data symbol positions in a sequence of two-dimensional symbol blocks Bi, a positive integer. Each of the symbol blocks has data symbol positions and coding symbol positions. Coding symbols for the coding symbol positions in each symbol block Bi in the sequence are computed. The coding symbols are computed such that, for each symbol block Bi that has a preceding symbol block Bi?1 and a subsequent symbol block Bi+1 in the sequence, symbols at symbol positions along one dimension of the preceding symbol block Bi?1, concatenated with the data symbols and the coding symbols along the other dimension in the symbol Bi, form a codeword of a FEC component code, and symbols at symbol positions along the one dimension of the symbol Bi, concatenated with the data symbols and the coding symbols along the other dimension in the subsequent symbol block Bi+1, form a codeword of the FEC component code.
    Type: Grant
    Filed: June 27, 2016
    Date of Patent: June 11, 2019
    Assignee: INPHI CORPORATION
    Inventors: Arash Farhoodfar, Frank R. Kschischang, Andrew Hunt, Benjamin P. Smith, John Lodge
  • Publication number: 20190131106
    Abstract: A cryotransfer holder for mounting a specimen held at cryogenic temperature in an electron microscope is described. The holder includes a cylindrical dewar configured to maintain a constant center of mass about the holder axis regardless of orientation of the dewar. The holder further includes a sample shutter control mechanism that can be decoupled from the shutter to reduce vibration during imaging. There is also described a workstation for mounting specimens into the cryotransfer holder at cryogenic temperature. The workstation allows rotation about the cryotransfer holder axis to improve access to the sample placement area on the holder and to facilitate easy removal and retrieval of the sample after imaging.
    Type: Application
    Filed: October 29, 2018
    Publication date: May 2, 2019
    Inventors: Alexander Jozef Gubbens, John Andrew Hunt, Masoud Azimi, Radosav Pantelic, Ron Zolkowski, Chris Booth