Patents by Inventor Andrew J. Edelbrock

Andrew J. Edelbrock has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20190106728
    Abstract: A biosensor system determines an analyte concentration of a biological sample using an electrochemical process without Cottrell decay. The biosensor system generates an output signal having a transient decay, where the output signal is not inversely proportional to the square root of the time. The transient decay is greater or less than the ?0.5 decay constant of a Cottrell decay. The transient decay may result from a relatively short incubation period, relatively small sample reservoir volumes, relatively small distances between electrode surfaces and the lid of the sensor strip, and/or relatively short excitations in relation to the average initial thickness of the reagent layer. The biosensor system determines the analyte concentration from the output signal having a transient decay.
    Type: Application
    Filed: December 14, 2018
    Publication date: April 11, 2019
    Inventors: Huan-Ping Wu, Steven C. Charlton, Amy H. Chu, Andrew J. Edelbrock, Sung-Kwon Jung, Dijia Huang
  • Patent number: 10190150
    Abstract: A biosensor system determines an analyte concentration of a biological sample using an electrochemical process without Cottrell decay. The biosensor system generates an output signal having a transient decay, where the output signal is not inversely proportional to the square root of the time. The transient decay is greater or less than the ?0.5 decay constant of a Cottrell decay. The transient decay may result from a relatively short incubation period, relatively small sample reservoir volumes, relatively small distances between electrode surfaces and the lid of the sensor strip, and/or relatively short excitations in relation to the average initial thickness of the reagent layer. The biosensor system determines the analyte concentration from the output signal having a transient decay.
    Type: Grant
    Filed: March 10, 2015
    Date of Patent: January 29, 2019
    Assignee: ASCENSIA DIABETES CARE HOLDINGS AG
    Inventors: Huan-Ping Wu, Steven C. Charlton, Amy H. Chu, Andrew J. Edelbrock, Sung-Kwon Jung, Dijia Huang
  • Patent number: 9664644
    Abstract: A test sensor includes a body, a first conductive trace, a second conductive trace, and a third conductive trace. The body includes a first region that has a fluid-receiving area, a second region separate from the first region, and a first temperature sensing interface disposed at or adjacent to the fluid-receiving area. The fluid-receiving area receives a sample. The first trace is disposed on the body, and at least a portion of the first trace is disposed in the first region. The second and third traces are disposed on the body. The third trace extends from the first to the second regions. The third trace is connected to the first trace at the first temperature sensing interface. The third trace includes a different material than the first trace. A first thermocouple is formed at the first temperature sensing interface. The thermocouple provides temperature data to determine an analyte concentration.
    Type: Grant
    Filed: June 24, 2015
    Date of Patent: May 30, 2017
    Assignee: Ascensia Diabetes Care Holdings AG
    Inventors: Steve Hoi-Cheong Sun, Swetha Chinnayelka, John P. Creaven, Andrew J. Edelbrock, Matthew B. Holzer, Narasinha C. Parasnis, Jeffery S. Reynolds, Paul M. Ripley, Steven C. Charlton, Xin Wang, Mu Wu
  • Publication number: 20160274052
    Abstract: According to one embodiment of the present invention, an electrochemical sensor (10) for detecting the concentration of analyte in a fluid test sample is disclosed. The sensor (10) includes a counter electrode having a high-resistance portion for use in detecting whether a predetermined amount of sample has been received by the test sensor.
    Type: Application
    Filed: May 31, 2016
    Publication date: September 22, 2016
    Inventors: Dijia Huang, Steven C. Charlton, Suny J. George, Andrew J. Edelbrock
  • Patent number: 9377430
    Abstract: According to one embodiment of the present invention, an electrochemical sensor (10) for detecting the concentration of analyte in a fluid test sample is disclosed. The sensor (10) includes a counter electrode having a high-resistance portion for use in detecting whether a predetermined amount of sample has been received by the test sensor.
    Type: Grant
    Filed: March 25, 2014
    Date of Patent: June 28, 2016
    Assignee: Ascensia Diabetes Care Holdings AG
    Inventors: Dijia Huang, Steven C. Charlton, Suny J. George, Andrew J. Edelbrock
  • Patent number: 9304099
    Abstract: An electrochemical test sensor for detecting the analyte concentration of a fluid test sample includes a base, a dielectric layer, a reagent layer and a lid. The base provides a flow path for the test sample having on its surface a counter electrode and a working electrode adapted to electrically communicate with a detector of electrical current. The dielectric layer forms a dielectric window therethrough. The reagent layer includes an enzyme that is adapted to react with the analyte. The lid is adapted to mate with the base and to assist in forming a capillary space with an opening for the introduction of the test sample thereto. At least a portion of the width of the counter electrode is greater than the width of the working electrode.
    Type: Grant
    Filed: November 1, 2013
    Date of Patent: April 5, 2016
    Assignee: Ascensia Diabetes Care Holdings AG
    Inventors: Andrew J. Edelbrock, Steven C. Charlton
  • Publication number: 20150293055
    Abstract: A test sensor includes a body, a first conductive trace, a second conductive trace, and a third conductive trace. The body includes a first region that has a fluid-receiving area, a second region separate from the first region, and a first temperature sensing interface disposed at or adjacent to the fluid-receiving area. The fluid-receiving area receives a sample. The first trace is disposed on the body, and at least a portion of the first trace is disposed in the first region. The second and third traces are disposed on the body. The third trace extends from the first to the second regions. The third trace is connected to the first trace at the first temperature sensing interface. The third trace includes a different material than the first trace. A first thermocouple is formed at the first temperature sensing interface. The thermocouple provides temperature data to determine an analyte concentration.
    Type: Application
    Filed: June 24, 2015
    Publication date: October 15, 2015
    Inventors: Steve Hoi-Cheong Sun, Swetha Chinnayelka, John P. Creaven, Andrew J. Edelbrock, Matthew B. Holzer, Narasinha C. Parasnis, Jeffrey S. Reynolds, Paul M. Ripley, Steven C. Charlton, Xin Wang, Mu Wu
  • Patent number: 9097650
    Abstract: A test sensor includes a body, a first conductive trace, a second conductive trace, and a third conductive trace. The body includes a first region that has a fluid-receiving area, a second region separate from the first region, and a first temperature sensing interface disposed at or adjacent to the fluid-receiving area. The fluid-receiving area receives a sample. The first trace is disposed on the body, and at least a portion of the first trace is disposed in the first region. The second and third traces are disposed on the body. The third trace extends from the first to the second regions. The third trace is connected to the first trace at the first temperature sensing interface. The third trace includes a different material than the first trace. A first thermocouple is formed at the first temperature sensing interface. The thermocouple provides temperature data to determine an analyte concentration.
    Type: Grant
    Filed: December 2, 2013
    Date of Patent: August 4, 2015
    Assignee: Bayer HealthCare LLC
    Inventors: Steve Hoi-Cheong Sun, Swetha Chinnayelka, John P. Creaven, Andrew J. Edelbrock, Matthew B. Holzer, Narasinha C. Parasnis, Jeffery S. Reynolds, Paul M. Ripley, Steven C. Charlton, Xin Wang, Mu Wu
  • Publication number: 20150176054
    Abstract: A biosensor system determines an analyte concentration of a biological sample using an electrochemical process without Cottrell decay. The biosensor system generates an output signal having a transient decay, where the output signal is not inversely proportional to the square root of the time. The transient decay is greater or less than the ?0.5 decay constant of a Cottrell decay. The transient decay may result from a relatively short incubation period, relatively small sample reservoir volumes, relatively small distances between electrode surfaces and the lid of the sensor strip, and/or relatively short excitations in relation to the average initial thickness of the reagent layer. The biosensor system determines the analyte concentration from the output signal having a transient decay.
    Type: Application
    Filed: March 10, 2015
    Publication date: June 25, 2015
    Inventors: Huan-Ping Wu, Steven C. Charlton, Amy H. Chu, Andrew J. Edelbrock, Sung-Kwon Jung, Dijia Huang
  • Publication number: 20150104561
    Abstract: A test sensor reagent for measuring the concentration of analytes in body fluids includes cellulose polymers for improving the stability of the test sensor and reducing the total assay time. The test sensor reagent also includes an enzyme, an electron transfer mediator and a rheological additive.
    Type: Application
    Filed: December 18, 2014
    Publication date: April 16, 2015
    Inventors: Amy H. Chu, Andrew J. Edelbrock, Hope G. Spradlin
  • Patent number: 9005527
    Abstract: A biosensor system determines an analyte concentration of a biological sample using an electrochemical process without Cottrell decay. The biosensor system generates an output signal having a transient decay, where the output signal is not inversely proportional to the square root of the time. The transient decay is greater or less than the ?0.5 decay constant of a Cottrell decay. The transient decay may result from a relatively short incubation period, relatively small sample reservoir volumes, relatively small distances between electrode surfaces and the lid of the sensor strip, and/or relatively short excitations in relation to the average initial thickness of the reagent layer. The biosensor system determines the analyte concentration from the output signal having a transient decay.
    Type: Grant
    Filed: May 29, 2013
    Date of Patent: April 14, 2015
    Assignee: Bayer Healthcare LLC
    Inventors: Huan-Ping Wu, Steven C. Charlton, Amy H. Chu, Andrew J. Edelbrock, Sung-Kwon Jung, Dijia Huang
  • Patent number: 8940153
    Abstract: A test sensor reagent for measuring the concentration of analytes in body fluids includes cellulose polymers for improving the stability of the test sensor and reducing the total assay time. The test sensor reagent also includes an enzyme, an electron transfer mediator and a rheological additive.
    Type: Grant
    Filed: November 13, 2006
    Date of Patent: January 27, 2015
    Assignee: Bayer Healthcare LLC
    Inventors: Amy H. Chu, Andrew J. Edelbrock, Hope G. Spradlin
  • Publication number: 20140202881
    Abstract: According to one embodiment of the present invention, an electrochemical sensor (10) for detecting the concentration of analyte in a fluid test sample is disclosed. The sensor (10) includes a counter electrode having a high-resistance portion for use in detecting whether a predetermined amount of sample has been received by the test sensor.
    Type: Application
    Filed: March 25, 2014
    Publication date: July 24, 2014
    Applicant: Bayer HealthCare LLC
    Inventors: Dijia Huang, Steven C. Charlton, Suny J. George, Andrew J. Edelbrock
  • Publication number: 20140124382
    Abstract: An electrochemical test sensor for detecting the analyte concentration of a fluid test sample includes a base, a dielectric layer, a reagent layer and a lid. The base provides a flow path for the test sample having on its surface a counter electrode and a working electrode adapted to electrically communicate with a detector of electrical current. The dielectric layer forms a dielectric window therethrough. The reagent layer includes an enzyme that is adapted to react with the analyte. The lid is adapted to mate with the base and to assist in forming a capillary space with an opening for the introduction of the test sample thereto. At least a portion of the width of the counter electrode is greater than the width of the working electrode.
    Type: Application
    Filed: November 1, 2013
    Publication date: May 8, 2014
    Applicant: Bayer HealthCare LLC
    Inventors: Andrew J. Edelbrock, Steven C. Charlton
  • Patent number: 8702961
    Abstract: According to one embodiment of the present invention, an electrochemical sensor (10) for detecting the concentration of analyte in a fluid test sample is disclosed. The sensor (10) includes a counter electrode having a high-resistance portion for use in detecting whether a predetermined amount of sample has been received by the test sensor.
    Type: Grant
    Filed: February 25, 2013
    Date of Patent: April 22, 2014
    Assignee: Bayer HealthCare LLC
    Inventors: Dijia Huang, Steven C. Charlton, Suny J. George, Andrew J. Edelbrock
  • Publication number: 20140083848
    Abstract: A test sensor includes a body, a first conductive trace, a second conductive trace, and a third conductive trace. The body includes a first region that has a fluid-receiving area, a second region separate from the first region, and a first temperature sensing interface disposed at or adjacent to the fluid-receiving area. The fluid-receiving area receives a sample. The first trace is disposed on the body, and at least a portion of the first trace is disposed in the first region. The second and third traces are disposed on the body. The third trace extends from the first to the second regions. The third trace is connected to the first trace at the first temperature sensing interface. The third trace includes a different material than the first trace. A first thermocouple is formed at the first temperature sensing interface. The thermocouple provides temperature data to determine an analyte concentration.
    Type: Application
    Filed: December 2, 2013
    Publication date: March 27, 2014
    Applicant: Bayer HealthCare LLC
    Inventors: Steve Hoi-Cheong Sun, Swetha Chinnayelka, John P. Creaven, Andrew J. Edelbrock, Matthew B. Holzer, Narasinha C. Parasnis, Jeffery S. Reynolds, Paul M. Ripley, Steven C. Charlton, Xin Wang, Mu Wu
  • Patent number: 8617367
    Abstract: An electrochemical test sensor for detecting the analyte concentration of a fluid test sample includes a base, a dielectric layer, a reagent layer and a lid. The base provides a flow path for the test sample having on its surface a counter electrode and a working electrode adapted to electrically communicate with a detector of electrical current. The dielectric layer forms a dielectric window therethrough. The reagent layer includes an enzyme that is adapted to react with the analyte. The lid is adapted to mate with the base and to assist in forming a capillary space with an opening for the introduction of the test sample thereto. At least a portion of the width of the counter electrode is greater than the width of the working electrode.
    Type: Grant
    Filed: May 3, 2007
    Date of Patent: December 31, 2013
    Assignee: Bayer Healthcare LLC
    Inventors: Andrew J. Edelbrock, Steven C. Charlton
  • Patent number: 8617381
    Abstract: A test sensor includes a body, a first conductive trace, a second conductive trace, and a third conductive trace. The body includes a first region that has a fluid-receiving area, a second region separate from the first region, and a first temperature sensing interface disposed at or adjacent to the fluid-receiving area. The fluid-receiving area receives a sample. The first trace is disposed on the body, and at least a portion of the first trace is disposed in the first region. The second and third traces are disposed on the body. The third trace extends from the first to the second regions. The third trace is connected to the first trace at the first temperature sensing interface. The third trace includes a different material than the first trace. A first thermocouple is formed at the first temperature sensing interface. The thermocouple provides temperature data to determine an analyte concentration.
    Type: Grant
    Filed: June 23, 2010
    Date of Patent: December 31, 2013
    Assignee: Bayer Healthcare LLC
    Inventors: Steve Hoi-Cheong Sun, Swetha Chinnayelka, John P. Creaven, Andrew J. Edelbrock, Matthew B. Holzer, Narasinha C. Parasnis, Jeffery S. Reynolds, Paul M. Ripley, Steven C. Charlton, Xin Wang, Mu Wu
  • Publication number: 20130334066
    Abstract: A biosensor system determines an analyte concentration of a biological sample using an electrochemical process without Cottrell decay. The biosensor system generates an output signal having a transient decay, where the output signal is not inversely proportional to the square root of the time. The transient decay is greater or less than the ?0.5 decay constant of a Cottrell decay. The transient decay may result from a relatively short incubation period, relatively small sample reservoir volumes, relatively small distances between electrode surfaces and the lid of the sensor strip, and/or relatively short excitations in relation to the average initial thickness of the reagent layer. The biosensor system determines the analyte concentration from the output signal having a transient decay.
    Type: Application
    Filed: May 29, 2013
    Publication date: December 19, 2013
    Inventors: Huan-Ping Wu, Steven C. Charlton, Amy H. Chu, Andrew J. Edelbrock, Sung-Kwon Jung, Dijia Huang
  • Patent number: RE45384
    Abstract: An electrochemical test sensor adapted to assist in determining the concentration of analyte in a fluid sample is disclosed. The sensor comprises a base that assists in forming an opening for introducing the fluid sample, a working electrode being coupled to the base, and a counter electrode being coupled to the base, the counter electrode and the working electrode being adapted to be in electrical communication with a detector of electrical current, and a sub-element being coupled to the base. A major portion of the counter electrode is located downstream relative to the opening and at least a portion of the working electrode. The sub-element is located upstream relative to the working electrode such that when electrical communication occurs between only the sub-element and the working electrode there is insufficient flow of electrical current through the detector to determine the concentration of the analyte in the fluid sample.
    Type: Grant
    Filed: September 9, 2013
    Date of Patent: February 24, 2015
    Assignee: Bayer HealthCare LLC
    Inventors: Matthew K. Musho, J. Oakey Noell, Andrew J. Edelbrock, Dijia Huang