Patents by Inventor Andrew J. Geall

Andrew J. Geall has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9180162
    Abstract: The invention is related to polynucleotide-based cytomegalovirus vaccines. In particular, the invention is plasmids operably encoding HCMV antigens, in which the naturally-occurring coding regions for the HCMV antigens have been modified for improved translation in human or other mammalian cells through codon optimization. HCMV antigens which are useful in the invention include, but are not limited to pp65, glycoprotein B (gB), IE1, and fragments, variants or derivatives of either of these antigens. In certain embodiments, sequences have been deleted, e.g., the Arg435-Lys438 putative kinase in pp65 and the membrane anchor and endocellular domains in gB. The invention is further directed to methods to induce an immune response to HCMV in a mammal, for example, a human, comprising delivering a plasmid encoding a codon-optimized HCMV antigen as described above.
    Type: Grant
    Filed: February 10, 2014
    Date of Patent: November 10, 2015
    Assignee: Vical Incorporated
    Inventors: Gary G. Hermanson, Andrew J. Geall, Mary Kopke Wloch
  • Patent number: 8821890
    Abstract: The present invention is directed to compositions and methods for enhancing the immune response of a human in need of protection against influenza virus (IV) infection by administering in vivo, into a tissue of the human, at least one polynucleotide comprising one or more regions of nucleic acid encoding an IV protein or a fragment, a variant, or a derivative thereof, or a protein encoded thereby. The polynucleotide is incorporated into the cells of the human in vivo, and an immunologically effective amount of an immunogenic epitope of an IV, or a fragment, variant, or derivative thereof is produced in vivo. The IV protein (in purified form or in the form of an inactivated IV vaccine) is also administered in an immunologically effective amount.
    Type: Grant
    Filed: September 30, 2011
    Date of Patent: September 2, 2014
    Assignee: Vical Incorporated
    Inventors: Catherine J. Luke, Adrian Vilalta, Mary K. Wloch, Thomas G. Evans, Andrew J. Geall, Gretchen S. Jimenez
  • Publication number: 20140186382
    Abstract: The invention is related to polynucleotide-based cytomegalovirus vaccines. In particular, the invention is plasmids operably encoding HCMV antigens, in which the naturally-occurring coding regions for the HCMV antigens have been modified for improved translation in human or other mammalian cells through codon optimization. HCMV antigens which are useful in the invention include, but are not limited to pp65, glycoprotein B (gB), IE1, and fragments, variants or derivatives of either of these antigens. In certain embodiments, sequences have been deleted, e.g., the Arg435-Lys438 putative kinase in pp65 and the membrane anchor and endocellular domains in gB. The invention is further directed to methods to induce an immune response to HCMV in a mammal, for example, a human, comprising delivering a plasmid encoding a codon-optimized HCMV antigen as described above.
    Type: Application
    Filed: February 10, 2014
    Publication date: July 3, 2014
    Applicant: Vical Incorporated
    Inventors: Gary G. HERMANSON, Andrew J. Geall, Mary Kopke Wloch
  • Patent number: 8673317
    Abstract: The invention relates to plasmids operably encoding HCMV antigens, in which the naturally-occurring coding regions for the HCMV antigens have been modified for improved translation in human or other mammalian cells through codon optimization. HCMV antigens, which are useful in the invention include, but are not limited to pp65, glycoprotein B (gB), IE1, and fragments, variants or derivatives of any of these antigens. In certain embodiments, sequences have been deleted, e.g., the Arg435-Lys438 putative kinase in pp65 and the membrane anchor and endocellular domains in gB. The invention is further directed to methods of inducing an immune response to HCMV in a mammal, for example, a human, comprising delivering a plasmid encoding a codon-optimized HCMV antigen as described above. The invention is also directed to pharmaceutical compositions comprising plasmids encoding a codon-optimized HCMV antigen as described above, and further comprising adjuvants, excipients, or immune modulators.
    Type: Grant
    Filed: June 18, 2012
    Date of Patent: March 18, 2014
    Assignee: Vical Incorporated
    Inventors: Gary G. Hermanson, Andrew J. Geall, Mary Kopke Wloch
  • Publication number: 20130017217
    Abstract: The invention relates to plasmids operably encoding HCMV antigens, in which the naturally-occurring coding regions for the HCMV antigens have been modified for improved translation in human or other mammalian cells through codon optimization. HCMV antigens, which are useful in the invention include, but are not limited to pp65, glycoprotein B (gB), IE1, and fragments, variants or derivatives of any of these antigens. In certain embodiments, sequences have been deleted, e.g., the Arg435-Lys438 putative kinase in pp65 and the membrane anchor and endocellular domains in gB. The invention is further directed to methods of inducing an immune response to HCMV in a mammal, for example, a human, comprising delivering a plasmid encoding a codon-optimized HCMV antigen as described above. The invention is also directed to pharmaceutical compositions comprising plasmids encoding a codon-optimized HCMV antigen as described above, and further comprising adjuvants, excipients, or immune modulators.
    Type: Application
    Filed: June 18, 2012
    Publication date: January 17, 2013
    Applicant: Vical Incorporated
    Inventors: Gary G. Hermanson, Andrew J. Geall, Mary Kopke Wloch
  • Patent number: 8278093
    Abstract: The invention is related to polynucleotide-based cytomegalovirus vaccines. In particular, the invention is plasmids operably encoding HCMV antigens, in which the naturally-occurring coding regions for the HCMV antigens have been modified for improved translation in human or other mammalian cells through codon optimization. HCMV antigens which are useful in the invention include, but are not limited to pp65, glycoprotein B (gB), IE1, and fragments, variants or derivatives of either of these antigens. In certain embodiments, sequences have been deleted, e.g., the Arg435-Lys438 putative kinase in pp65 and the membrane anchor and endocellular domains in gB. The invention is further directed to methods to induce an immune response to HCMV in a mammal, for example, a human, comprising delivering a plasmid encoding a codon-optimized HCMV antigen as described above.
    Type: Grant
    Filed: January 25, 2011
    Date of Patent: October 2, 2012
    Assignee: Vical Incorporated
    Inventors: Gary G. Hermanson, Andrew J. Geall, Mary Kopke Wloch
  • Publication number: 20120128717
    Abstract: The present invention is directed to compositions and methods for enhancing the immune response of a human in need of protection against influenza virus (IV) infection by administering in vivo, into a tissue of the human, at least one polynucleotide comprising one or more regions of nucleic acid encoding an IV protein or a fragment, a variant, or a derivative thereof, or a protein encoded thereby. The polynucleotide is incorporated into the cells of the human in vivo, and an immunologically effective amount of an immunogenic epitope of an IV, or a fragment, variant, or derivative thereof is produced in vivo. The IV protein (in purified form or in the form of an inactivated IV vaccine) is also administered in an immunologically effective amount.
    Type: Application
    Filed: September 30, 2011
    Publication date: May 24, 2012
    Applicant: Vical Incorporated
    Inventors: Catherine J. LUKE, Adrian Vilalta, Mary K. Wloch, Thomas G. Evans, Andrew J. Geall, Gretchen S. Jimenez
  • Patent number: 8128938
    Abstract: The present invention is directed to enhancing the immune response of a human in need of protection against IV infection by administering in vivo, into a tissue of the human, at least one polynucleotide comprising one or more regions of nucleic acid encoding an IV protein or a fragment, a variant, or a derivative thereof. The present invention is further directed to enhancing the immune response of a human in need of protection against IV infection by administering, in vivo, into a tissue of the human, at least one IV protein or a fragment, a variant, or derivative thereof. The IV protein can be, for example, in purified form or can be an inactivated IV, such as those present in inactivated IV vaccines. The polynucleotide is incorporated into the cells of the human in vivo, and an immunologically effective amount of an immunogenic epitope of an IV, or a fragment, variant, or derivative thereof is produced in vivo.
    Type: Grant
    Filed: August 17, 2007
    Date of Patent: March 6, 2012
    Assignee: Vical Incorporated
    Inventors: Catherine J. Luke, Adrian Vilalta, Mary K. Wloch, Thomas G. Evans, Andrew J. Geall, Gretchen S. Jimenez
  • Publication number: 20120045467
    Abstract: The present invention is directed to enhancing the immune response of a human in need of protection against IV infection by administering in vivo, into a tissue of the human, at least one polynucleotide comprising one or more regions of nucleic acid encoding an IV protein or a fragment, a variant, or a derivative thereof. The present invention is further directed to enhancing the immune response of a human in need of protection against IV infection by administering, in vivo, into a tissue of the human, at least one IV protein or a fragment, a variant, or derivative thereof. The IV protein can be, for example, in purified form or can be an inactivated IV, such as those present in inactivated IV vaccines. The polynucleotide is incorporated into the cells of the human in vivo, and an immunologically effective amount of an immunogenic epitope of an IV, or a fragment, variant, or derivative thereof is produced in vivo.
    Type: Application
    Filed: August 17, 2007
    Publication date: February 23, 2012
    Applicant: Vical Incorporated
    Inventors: Catherine J. Luke, Adrian Vilalta, Mary K. Wloch, Thomas G. Evans, Andrew J. Geall, Gretchen S. Jimenez
  • Publication number: 20110177124
    Abstract: The invention is related to polynucleotide-based cytomegalovirus vaccines. In particular, the invention is plasmids operably encoding HCMV antigens, in which the naturally-occurring coding regions for the HCMV antigens have been modified for improved translation in human or other mammalian cells through codon optimization. HCMV antigens which are useful in the invention include, but are not limited to pp65, glycoprotein B (gB), IE1, and fragments, variants or derivatives of either of these antigens. In certain embodiments, sequences have been deleted, e.g., the Arg435-Lys438 putative kinase in pp65 and the membrane anchor and endocellular domains in gB. The invention is further directed to methods to induce an immune response to HCMV in a mammal, for example, a human, comprising delivering a plasmid encoding a codon-optimized HCMV antigen as described above.
    Type: Application
    Filed: January 25, 2011
    Publication date: July 21, 2011
    Applicant: Vical Incorporated
    Inventors: Gary G. HERMANSON, Andrew J. Geall, Mary Kopke Wloch
  • Patent number: 7888112
    Abstract: The invention is related to polynucleotide-based cytomegalovirus vaccines. In particular, the invention is plasmids operably encoding HCMV antigens, in which the naturally-occurring coding regions for the HCMV antigens have been modified for improved translation in human or other mammalian cells through codon optimization. HCMV antigens which are useful in the invention include, but are not limited to pp65, glycoprotein B (gB), IE1, and fragments, variants or derivatives of either of these antigens. In certain embodiments, sequences have been deleted, e.g., the Arg435-Lys438 putative kinase in pp65 and the membrane anchor and endocellular domains in gB. The invention is further directed to methods to induce an immune response to HCMV in a mammal, for example, a human, comprising delivering a plasmid encoding a codon-optimized HCMV antigen as described above.
    Type: Grant
    Filed: August 17, 2007
    Date of Patent: February 15, 2011
    Assignee: Vical Incorporated
    Inventors: Gary G. Hermanson, Andrew J. Geall, Mary Kopke Wloch
  • Patent number: 7785603
    Abstract: The present invention is directed to enhancing the immune response of a human in need of protection against IV infection by administering in vivo, into a tissue of the human, at least one polynucleotide comprising one or more regions of nucleic acid encoding an IV protein or a fragment, a variant, or a derivative thereof. The present invention is further directed to enhancing the immune response of a human in need of protection against IV infection by administering, in vivo, into a tissue of the human, at least one IV protein or a fragment, a variant, or derivative thereof. The IV protein can be, for example, in purified form or can be an inactivated IV, such as those present in inactivated IV vaccines. The polynucleotide is incorporated into the cells of the human in vivo, and an immunologically effective amount of an immunogenic epitope of an IV, or a fragment, variant, or derivative thereof is produced in vivo.
    Type: Grant
    Filed: March 9, 2007
    Date of Patent: August 31, 2010
    Assignee: Vical Incorporated
    Inventors: Catherine J. Luke, Adrian Vilalta, Mary K. Wloch, Thomas G. Evans, Andrew J. Geall, Gretchen S. Jimenez
  • Publication number: 20100197771
    Abstract: The present invention is directed to enhancing the immune response of a human in need of protection against IV infection by administering in vivo, into a tissue of the human, at least one polynucleotide comprising one or more regions of nucleic acid encoding an IV protein or a fragment, a variant, or a derivative thereof. The present invention is further directed to enhancing the immune response of a human in need of protection against IV infection by administering, in vivo, into a tissue of the human, at least one IV protein or a fragment, a variant, or derivative thereof. The IV protein can be, for example, in purified form or can be an inactivated IV, such as those present in inactivated IV vaccines. The polynucleotide is incorporated into the cells of the human in vivo, and an immunologically effective amount of an immunogenic epitope of an IV, or a fragment, variant, or derivative thereof is produced in vivo.
    Type: Application
    Filed: January 15, 2010
    Publication date: August 5, 2010
    Applicant: Vical Incorporated
    Inventors: Catherine J. Luke, Adrian Vilalta, Mary K. Wloch, Thomas G. Evans, Andrew J. Geall, Gretchen S. Jimenez
  • Patent number: 7537768
    Abstract: The present invention is directed to enhancing the immune response of a human in need of protection against IV infection by administering in vivo, into a tissue of the human, at least one polynucleotide comprising one or more regions of nucleic acid encoding an IV protein or a fragment, a variant, or a derivative thereof. The present invention is further directed to enhancing the immune response of a human in need of protection against IV infection by administering, in vivo, into a tissue of the human, at least one IV protein or a fragment, a variant, or derivative thereof. The IV protein can be, for example, in purified form or can be an inactivated IV, such as those present in inactivated IV vaccines. The polynucleotide is incorporated into the cells of the human in vivo, and an immunologically effective amount of an immunogenic epitope of an IV, or a fragment, variant, or derivative thereof is produced in vivo.
    Type: Grant
    Filed: February 9, 2007
    Date of Patent: May 26, 2009
    Assignee: Vical Incorporated
    Inventors: Catherine J. Luke, Adrian Vilalta, Mary K. Wloch, Thomas G. Evans, Andrew J. Geall, Gretchen S. Jimenez
  • Patent number: 7410795
    Abstract: The invention is related to polynucleotide-based cytomegalovirus vaccines. In particular, the invention is plasmids operably encoding HCMV antigens, in which the naturally-occurring coding regions for the HCMV antigens have been modified for improved translation in human or other mammalian cells through codon optimization. HCMV antigens which are useful in the invention include, but are not limited to pp65, glycoprotein B (gB), IE1, and fragments, variants or derivatives of either of these antigens. In certain embodiments, sequences have been deleted, e.g., the Arg435-Lys438 putative kinase in pp65 and the membrane anchor and endocellular domains in gB. The invention is further directed to methods to induce an immune response to HCMV in a mammal, for example, a human, comprising delivering a plasmid encoding a codon-optimized HCMV antigen as described above.
    Type: Grant
    Filed: December 19, 2003
    Date of Patent: August 12, 2008
    Assignee: Vical Incorporated
    Inventors: Gary G. Hermanson, Andrew J. Geall, Mary Kopke Wloch
  • Publication number: 20040209241
    Abstract: The invention is related to polynucleotide-based cytomegalovirus vaccines. In particular, the invention is plasmids operably encoding HCMV antigens, in which the naturally-occurring coding regions for the HCMV antigens have been modified for improved translation in human or other mammalian cells through codon optimization. HCMV antigens which are useful in the invention include, but are not limited to pp65, glycoprotein B (gB), IE1, and fragments, variants or derivatives of either of these antigens. In certain embodiments, sequences have been deleted, e.g., the Arg435-Lys438 putative kinase in pp65 and the membrane anchor and endocellular domains in gB. The invention is further directed to methods to induce an immune response to HCMV in a mammal, for example, a human, comprising delivering a plasmid encoding a codon-optimized HCMV antigen as described above.
    Type: Application
    Filed: December 19, 2003
    Publication date: October 21, 2004
    Applicant: Vical Incorporated
    Inventors: Gary G. Hermanson, Andrew J. Geall, Mary Kopke Wloch