Patents by Inventor Andrew J. Keller
Andrew J. Keller has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 12117476Abstract: An apparatus for detecting a condition or authenticity of one or more electronic devices includes an enclosure having an antenna integrated therewithin, a fixture mounted within a hollow interior of the enclosure, the fixture being configured to receive the one or more electronic devices and connect one or more signals to each of the one or more electronic devices and a sensor and controller assembly connected to the antenna and configured to process a signature of an emission of a radiofrequency (RF) energy from of one or more electronic devices having the one or more signals connected thereto.Type: GrantFiled: August 21, 2023Date of Patent: October 15, 2024Assignee: Nokomis, Inc.Inventors: Walter J. Keller, III, Andrew Richard Portune, Todd Eric Chornenky, William Anthony Davis
-
Publication number: 20240317575Abstract: A device includes an opto-acoustic transducer configured to convert between an optical signal and an acoustic signal, an electro-acoustic transducer coupled to a microwave resonant circuit and configured to convert between an acoustic signal and a microwave signal, and an acoustic waveguide coupling the opto-acoustic transducer to the electro-acoustic transducer.Type: ApplicationFiled: April 30, 2024Publication date: September 26, 2024Applicant: California Institute of TechnologyInventors: Oskar Painter, Jie Luo, Michael T. Fang, Alp Sipahigil, Paul B. Dieterle, Mahmoud Kalaee, Johannes M. Fink, Andrew J. Keller, Gregory MacCabe, Hengjiang Ren, Justin D. Cohen
-
Patent number: 12006206Abstract: Embodiments described herein include systems and techniques for converting (i.e., transducing) a quantum-level (e.g., single photon) signal between the three wave forms (i.e., optical, acoustic, and microwave). A suspended crystalline structure is used at the nanometer scale to accomplish the desired behavior of the system as described in detail herein. Transducers that use a common acoustic intermediary transform optical signals to acoustic signals and vice versa as well as microwave signals to acoustic signals and vice versa. Other embodiments described herein include systems and techniques for storing a qubit in phonon memory having an extended coherence time. A suspended crystalline structure with specific geometric design is used at the nanometer scale to accomplish the desired behavior of the system.Type: GrantFiled: July 15, 2022Date of Patent: June 11, 2024Assignee: California Institute of TechnologyInventors: Oskar Painter, Jie Luo, Michael T. Fang, Alp Sipahigil, Paul B. Dieterle, Mahmoud Kalaee, Johannes M. Fink, Andrew J. Keller, Gregory MacCabe, Hengjiang Ren, Justin D. Cohen
-
Patent number: 11824248Abstract: A shielded bridge for a coplanar waveguide (CPW) includes a signal bridge extending from a first terminal of the CPW to a second terminal of the CPW. The signal bridge has a raised central portion that extends over a separate signal conductor. The shielded bridge for the CPW also includes a ground bridge extending from a first ground plane on a first side of the separate signal conductor to a second ground plane on a second side of the separate signal conductor. The ground bridge is positioned between the signal bridge and the separate signal conductor.Type: GrantFiled: December 18, 2020Date of Patent: November 21, 2023Assignee: California Institute of TechnologyInventors: Oskar Painter, Seyed Mohammad Mirhosseini Niri, Eun Jong Kim, Alp Sipahigil, Vinicius Thaddeu dos Santos Ferreira, Andrew J. Keller, Mahmoud Kalaee, Michael T. Fang
-
Publication number: 20230227305Abstract: Embodiments described herein include systems and techniques for converting (i.e., transducing) a quantum-level (e.g., single photon) signal between the three wave forms (i.e., optical, acoustic, and microwave). A suspended crystalline structure is used at the nanometer scale to accomplish the desired behavior of the system as described in detail herein. Transducers that use a common acoustic intermediary transform optical signals to acoustic signals and vice versa as well as microwave signals to acoustic signals and vice versa. Other embodiments described herein include systems and techniques for storing a qubit in phonon memory having an extended coherence time. A suspended crystalline structure with specific geometric design is used at the nanometer scale to accomplish the desired behavior of the system.Type: ApplicationFiled: March 21, 2023Publication date: July 20, 2023Applicant: California Institute of TechnologyInventors: Oskar Painter, Jie Luo, Michael T. Fang, Alp Sipahigil, Paul B. Dieterle, Mahmoud Kalaee, Johannes M. Fink, Andrew J. Keller, Gregory MacCabe, Hengjiang Ren, Justin D. Cohen
-
Patent number: 11649160Abstract: Embodiments described herein include systems and techniques for converting (i.e., transducing) a quantum-level (e.g., single photon) signal between the three wave forms (i.e., optical, acoustic, and microwave). A suspended crystalline structure is used at the nanometer scale to accomplish the desired behavior of the system as described in detail herein. Transducers that use a common acoustic intermediary transform optical signals to acoustic signals and vice versa as well as microwave signals to acoustic signals and vice versa. Other embodiments described herein include systems and techniques for storing a qubit in phonon memory having an extended coherence time. A suspended crystalline structure with specific geometric design is used at the nanometer scale to accomplish the desired behavior of the system.Type: GrantFiled: November 2, 2020Date of Patent: May 16, 2023Assignee: California Institute of TechnologyInventors: Oskar Painter, Jie Luo, Michael T. Fang, Alp Sipahigil, Paul B. Dieterle, Mahmoud Kalaee, Johannes M. Fink, Andrew J. Keller, Gregory MacCabe, Hengjiang Ren, Justin D. Cohen
-
Publication number: 20220356058Abstract: Embodiments described herein include systems and techniques for converting (i.e., transducing) a quantum-level (e.g., single photon) signal between the three wave forms (i.e., optical, acoustic, and microwave). A suspended crystalline structure is used at the nanometer scale to accomplish the desired behavior of the system as described in detail herein. Transducers that use a common acoustic intermediary transform optical signals to acoustic signals and vice versa as well as microwave signals to acoustic signals and vice versa. Other embodiments described herein include systems and techniques for storing a qubit in phonon memory having an extended coherence time. A suspended crystalline structure with specific geometric design is used at the nanometer scale to accomplish the desired behavior of the system.Type: ApplicationFiled: July 15, 2022Publication date: November 10, 2022Applicant: California Institute of TechnologyInventors: Oskar Painter, Jie Luo, Michael T. Fang, Alp Sipahigil, Paul B. Dieterle, Mahmoud Kalaee, Johannes M. Fink, Andrew J. Keller, Gregory MacCabe, Hengjiang Ren, Justin D. Cohen
-
Patent number: 11440792Abstract: Embodiments described herein include systems and techniques for converting (i.e., transducing) a quantum-level (e.g., single photon) signal between the three wave forms (i.e., optical, acoustic, and microwave). A suspended crystalline structure is used at the nanometer scale to accomplish the desired behavior of the system as described in detail herein. Transducers that use a common acoustic intermediary transform optical signals to acoustic signals and vice versa as well as microwave signals to acoustic signals and vice versa. Other embodiments described herein include systems and techniques for storing a qubit in phonon memory having an extended coherence time. A suspended crystalline structure with specific geometric design is used at the nanometer scale to accomplish the desired behavior of the system.Type: GrantFiled: November 2, 2020Date of Patent: September 13, 2022Assignee: California Institute of TechnologyInventors: Oskar Painter, Jie Luo, Michael T. Fang, Alp Sipahigil, Paul B. Dieterle, Mahmoud Kalaee, Johannes M. Fink, Andrew J. Keller, Gregory MacCabe, Hengjiang Ren, Justin D. Cohen
-
Publication number: 20210151844Abstract: A shielded bridge for a coplanar waveguide (CPW) includes a signal bridge extending from a first terminal of the CPW to a second terminal of the CPW. The signal bridge has a raised central portion that extends over a separate signal conductor. The shielded bridge for the CPW also includes a ground bridge extending from a first ground plane on a first side of the separate signal conductor to a second ground plane on a second side of the separate signal conductor. The ground bridge is positioned between the signal bridge and the separate signal conductor.Type: ApplicationFiled: December 18, 2020Publication date: May 20, 2021Applicant: CALIFORNIA INSTITUTE OF TECHNOLOGYInventors: Oskar Painter, Seyed Mohammad Mirhosseini Niri, Eun Jong Kim, Alp Sipahigil, Vinicius Thaddeu dos Santos Ferreira, Andrew J. Keller, Mahmoud Kalaee, Michael T. Fang
-
Publication number: 20210139315Abstract: Embodiments described herein include systems and techniques for converting (i.e., transducing) a quantum-level (e.g., single photon) signal between the three wave forms (i.e., optical, acoustic, and microwave). A suspended crystalline structure is used at the nanometer scale to accomplish the desired behavior of the system as described in detail herein. Transducers that use a common acoustic intermediary transform optical signals to acoustic signals and vice versa as well as microwave signals to acoustic signals and vice versa. Other embodiments described herein include systems and techniques for storing a qubit in phonon memory having an extended coherence time. A suspended crystalline structure with specific geometric design is used at the nanometer scale to accomplish the desired behavior of the system.Type: ApplicationFiled: November 2, 2020Publication date: May 13, 2021Applicant: California Institute of TechnologyInventors: Oskar Painter, Jie Luo, Michael T. Fang, Alp Sipahigil, Paul B. Dieterle, Mahmoud Kalaee, Johannes M. Fink, Andrew J. Keller, Gregory MacCabe, Hengjiang Ren, Justin D. Cohen
-
Publication number: 20210114864Abstract: Embodiments described herein include systems and techniques for converting (i.e., transducing) a quantum-level (e.g., single photon) signal between the three wave forms (i.e., optical, acoustic, and microwave). A suspended crystalline structure is used at the nanometer scale to accomplish the desired behavior of the system as described in detail herein. Transducers that use a common acoustic intermediary transform optical signals to acoustic signals and vice versa as well as microwave signals to acoustic signals and vice versa. Other embodiments described herein include systems and techniques for storing a qubit in phonon memory having an extended coherence time. A suspended crystalline structure with specific geometric design is used at the nanometer scale to accomplish the desired behavior of the system.Type: ApplicationFiled: November 2, 2020Publication date: April 22, 2021Applicant: California Institute of TechnologyInventors: Oskar Painter, Jie Luo, Michael T. Fang, Alp Sipahigil, Paul B. Dieterle, Mahmoud Kalaee, Johannes M. Fink, Andrew J. Keller, Gregory MacCabe, Hengjiang Ren, Justin D. Cohen
-
Patent number: 10916821Abstract: Metamaterial waveguides and shielded bridges are employed to improve the scalability and routing of quantum computing circuits. A metamaterial waveguide includes a signal conductor that has a periodic array of lumped element resonators distributed along and electrically coupled to a signal conductor. The periodic array of lumped element resonator pairs defines a bandgap within an operating bandwidth of the waveguide. Qubits can communicate within the operating bandwidth of the waveguide and communications via the waveguide can be controlled by changing a center frequency of the qubits. A shielded bridge is used to cross over high frequency communications and control CPW's in a quantum computing circuit. The shielded bridge includes a signal bridge that is elevated and extends over a separate CPW, and a ground bridge positioned between the signal bridge and the separate CPW.Type: GrantFiled: March 5, 2019Date of Patent: February 9, 2021Assignee: CALIFORNIA INSTITUTE OF TECHNOLOGYInventors: Oskar Painter, Seyed Mohammad Mirhosseini Niri, Eun Jong Kim, Alp Sipahigil, Vinicius Thaddeu dos Santos Ferreira, Andrew J. Keller, Mahmoud Kalaee, Michael T. Fang
-
Patent number: 10858240Abstract: Embodiments described herein include systems and techniques for converting (i.e., transducing) a quantum-level (e.g., single photon) signal between the three wave forms (i.e., optical, acoustic, and microwave). A suspended crystalline structure is used at the nanometer scale to accomplish the desired behavior of the system as described in detail herein. Transducers that use a common acoustic intermediary transform optical signals to acoustic signals and vice versa as well as microwave signals to acoustic signals and vice versa. Other embodiments described herein include systems and techniques for storing a qubit in phonon memory having an extended coherence time. A suspended crystalline structure with specific geometric design is used at the nanometer scale to accomplish the desired behavior of the system.Type: GrantFiled: March 5, 2019Date of Patent: December 8, 2020Assignee: CALIFORNIA INSTITUTE OF TECHNOLOGYInventors: Oskar Painter, Jie Luo, Michael T. Fang, Alp Sipahigil, Paul B. Dieterle, Mahmoud Kalaee, Johannes M. Fink, Andrew J. Keller, Gregory MacCabe, Hengjiang Ren, Justin D. Cohen
-
Patent number: 10858239Abstract: Embodiments described herein include systems and techniques for converting (i.e., transducing) a quantum-level (e.g., single photon) signal between the three wave forms (i.e., optical, acoustic, and microwave). A suspended crystalline structure is used at the nanometer scale to accomplish the desired behavior of the system as described in detail herein. Transducers that use a common acoustic intermediary transform optical signals to acoustic signals and vice versa as well as microwave signals to acoustic signals and vice versa. Other embodiments described herein include systems and techniques for storing a qubit in phonon memory having an extended coherence time. A suspended crystalline structure with specific geometric design is used at the nanometer scale to accomplish the desired behavior of the system.Type: GrantFiled: March 5, 2019Date of Patent: December 8, 2020Assignee: CALIFORNIA INSTITUTE OF TECHNOLOGYInventors: Oskar Painter, Jie Luo, Michael T. Fang, Alp Sipahigil, Paul B. Dieterle, Mahmoud Kalaee, Johannes M. Fink, Andrew J. Keller, Gregory MacCabe, Hengjiang Ren, Justin D. Cohen
-
Publication number: 20200062583Abstract: Embodiments described herein include systems and techniques for converting (i.e., transducing) a quantum-level (e.g., single photon) signal between the three wave forms (i.e., optical, acoustic, and microwave). A suspended crystalline structure is used at the nanometer scale to accomplish the desired behavior of the system as described in detail herein. Transducers that use a common acoustic intermediary transform optical signals to acoustic signals and vice versa as well as microwave signals to acoustic signals and vice versa. Other embodiments described herein include systems and techniques for storing a qubit in phonon memory having an extended coherence time. A suspended crystalline structure with specific geometric design is used at the nanometer scale to accomplish the desired behavior of the system.Type: ApplicationFiled: March 5, 2019Publication date: February 27, 2020Applicant: CALIFORNIA INSTITUTE OF TECHNOLOGYInventors: Oskar Painter, Jie Luo, Michael T. Fang, Alp Sipahigil, Paul B. Dieterle, Mahmoud Kalaee, Johannes M. Fink, Andrew J. Keller, Gregory MacCabe, Hengjiang Ren, Justin D. Cohen
-
Publication number: 20200052359Abstract: Metamaterial waveguides and shielded bridges are employed to improve the scalability and routing of quantum computing circuits. A metamaterial waveguide includes a signal conductor that has a periodic array of lumped element resonators distributed along and electrically coupled to a signal conductor. The periodic array of lumped element resonator pairs defines a bandgap within an operating bandwidth of the waveguide. Qubits can communicate within the operating bandwidth of the waveguide and communications via the waveguide can be controlled by changing a center frequency of the qubits. A shielded bridge is used to cross over high frequency communications and control CPW's in a quantum computing circuit. The shielded bridge includes a signal bridge that is elevated and extends over a separate CPW, and a ground bridge positioned between the signal bridge and the separate CPW.Type: ApplicationFiled: March 5, 2019Publication date: February 13, 2020Applicant: CALIFORNIA INSTITUTE OF TECHNOLOGYInventors: Oskar Painter, Seyed Mohammad Mirhosseini Niri, Eun Jong Kim, Alp Sipahigil, Vinicius Thaddeu dos Santos Ferreira, Andrew J. Keller, Mahmoud Kalaee, Michael T. Fang
-
Publication number: 20190270635Abstract: Embodiments described herein include systems and techniques for converting (i.e., transducing) a quantum-level (e.g., single photon) signal between the three wave forms (i.e., optical, acoustic, and microwave). A suspended crystalline structure is used at the nanometer scale to accomplish the desired behavior of the system as described in detail herein. Transducers that use a common acoustic intermediary transform optical signals to acoustic signals and vice versa as well as microwave signals to acoustic signals and vice versa. Other embodiments described herein include systems and techniques for storing a qubit in phonon memory having an extended coherence time. A suspended crystalline structure with specific geometric design is used at the nanometer scale to accomplish the desired behavior of the system.Type: ApplicationFiled: March 5, 2019Publication date: September 5, 2019Applicant: CALIFORNIA INSTITUTE OF TECHNOLOGYInventors: Oskar Painter, Jie Luo, Michael T. Fang, Alp Sipahigil, Paul B. Dieterle, Mahmoud Kalaee, Johannes M. Fink, Andrew J. Keller, Gregory MacCabe, Ren Hengjiang, Justin D. Cohen