Patents by Inventor Andrew J. McKerrow

Andrew J. McKerrow has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10043655
    Abstract: Methods of depositing a film on a substrate surface include surface mediated reactions in which a film is grown over one or more cycles of reactant adsorption and reaction. In one aspect, the method is characterized by intermittent delivery of dopant species to the film between the cycles of adsorption and reaction.
    Type: Grant
    Filed: February 7, 2017
    Date of Patent: August 7, 2018
    Assignee: Novellus Systems, Inc.
    Inventors: Shankar Swaminathan, Jon Henri, Dennis Hausmann, Pramod Subramonium, Mandyam Sriram, Vishwanathan Rangarajan, Kirthi Kattige, Bart van Schravendijk, Andrew J. McKerrow
  • Publication number: 20170148628
    Abstract: Methods of depositing a film on a substrate surface include surface mediated reactions in which a film is grown over one or more cycles of reactant adsorption and reaction. In one aspect, the method is characterized by intermittent delivery of dopant species to the film between the cycles of adsorption and reaction.
    Type: Application
    Filed: February 7, 2017
    Publication date: May 25, 2017
    Inventors: Shankar Swaminathan, Jon Henri, Dennis Hausmann, Pramod Subramonium, Mandyam Sriram, Vishwanathan Rangarajan, Kirthi Kattige, Bart van Schravendijk, Andrew J. McKerrow
  • Patent number: 9570274
    Abstract: Methods of depositing a film on a substrate surface include surface mediated reactions in which a film is grown over one or more cycles of reactant adsorption and reaction. In one aspect, the method is characterized by intermittent delivery of dopant species to the film between the cycles of adsorption and reaction.
    Type: Grant
    Filed: January 28, 2015
    Date of Patent: February 14, 2017
    Assignee: Novellus Systems, Inc.
    Inventors: Shankar Swaminathan, Jon Henri, Dennis Hausmann, Pramod Subramonium, Mandyam Sriram, Vishwanathan Rangarajan, Kirthi Kattige, Bart van Schravendijk, Andrew J. McKerrow
  • Publication number: 20150206719
    Abstract: Methods of depositing a film on a substrate surface include surface mediated reactions in which a film is grown over one or more cycles of reactant adsorption and reaction. In one aspect, the method is characterized by intermittent delivery of dopant species to the film between the cycles of adsorption and reaction.
    Type: Application
    Filed: January 28, 2015
    Publication date: July 23, 2015
    Inventors: Shankar Swaminathan, Jon Henri, Dennis Hausmann, Pramod Subramonium, Mandyam Sriram, Vishwanathan Rangarajan, Kirthi Kattige, Bart van Schravendijk, Andrew J. McKerrow
  • Patent number: 8999859
    Abstract: Methods of depositing a film on a substrate surface include surface mediated reactions in which a film is grown over one or more cycles of reactant adsorption and reaction. In one aspect, the method is characterized by intermittent delivery of dopant species to the film between the cycles of adsorption and reaction.
    Type: Grant
    Filed: December 18, 2013
    Date of Patent: April 7, 2015
    Assignee: Novellus Systems, Inc.
    Inventors: Shankar Swaminathan, Jon Henri, Dennis M. Hausmann, Pramod Subramonium, Mandyam Sriram, Vishwanathan Rangarajan, Kirthi K. Kattige, Bart K. van Schravendijk, Andrew J. McKerrow
  • Publication number: 20140216337
    Abstract: Methods of depositing a film on a substrate surface include surface mediated reactions in which a film is grown over one or more cycles of reactant adsorption and reaction. In one aspect, the method is characterized by intermittent delivery of dopant species to the film between the cycles of adsorption and reaction.
    Type: Application
    Filed: December 18, 2013
    Publication date: August 7, 2014
    Applicant: Novellus Systems, Inc.
    Inventors: Shankar Swaminathan, Jon Henri, Dennis M. Hausmann, Pramod Subramonium, Mandyam Sriram, Vishwanathan Rangarajan, Kirthi K. Kattige, Bart K. van Schravendijk, Andrew J. McKerrow
  • Patent number: 8637411
    Abstract: Methods of depositing a film on a substrate surface include surface mediated reactions in which a film is grown over one or more cycles of reactant adsorption and reaction. In one aspect, the method is characterized by intermittent delivery of dopant species to the film between the cycles of adsorption and reaction.
    Type: Grant
    Filed: September 23, 2011
    Date of Patent: January 28, 2014
    Assignee: Novellus Systems, Inc.
    Inventors: Shankar Swaminathan, Jon Henri, Dennis M. Hausmann, Pramod Subramonium, Mandyam Sriram, Vishwanathan Rangarajan, Kirthi K. Kattige, Bart J. van Schravendijk, Andrew J. McKerrow
  • Publication number: 20120028454
    Abstract: Methods of depositing a film on a substrate surface include surface mediated reactions in which a film is grown over one or more cycles of reactant adsorption and reaction. In one aspect, the method is characterized by intermittent delivery of dopant species to the film between the cycles of adsorption and reaction.
    Type: Application
    Filed: September 23, 2011
    Publication date: February 2, 2012
    Inventors: Shankar Swaminathan, Jon Henri, Dennis M. Hausmann, Pramod Subramonium, Mandyam Sriram, Vishwanathan Rangarajan, Kirthi K. Kattige, Bart J. van Schravendijk, Andrew J. McKerrow
  • Patent number: 7087518
    Abstract: One aspect of the invention relates to a method of removing contaminants from a low-k film. The method involves forming a sacrificial layer over the contaminated film. The contaminants combine with the sacrificial layer and are removed by etching away the sacrificial layer. An effective material for the sacrificial layer is, for example, a silicon carbide. The method can be used to prevent the occurrence of pattern defects in chemically amplified photoresists formed over low-k films.
    Type: Grant
    Filed: May 15, 2003
    Date of Patent: August 8, 2006
    Assignee: Texas Instruments Incorporated
    Inventors: David Gerald Farber, William Wesley Dostalik, Robert Kraft, Andrew J. McKerrow, Kenneth Joseph Newton, Ting Tsui
  • Patent number: 6861348
    Abstract: A low-k dielectric layer (104) is treated with a dry-wet (D-W) or dry-wet-dry (D-W-D) process to improve patterning Resist poisoning occurs due to an interaction between low-k films (104), such as OSG, and DUV resist (130). The D-W or D-W-D treatment is performed to either pretreat a low-k dielectric (104) before forming the pattern (130) or during a rework of the pattern (130).
    Type: Grant
    Filed: October 18, 2001
    Date of Patent: March 1, 2005
    Assignee: Texas Instruments Incorporated
    Inventors: Brian K. Kirkpatrick, Michael Morrison, Andrew J. McKerrow, Kenneth J. Newton, Dirk N. Anderson
  • Patent number: 6838300
    Abstract: A method of forming an integrated circuit including an organosilicate low dielectric constant insulating layer (40) formed of a substitution group depleted silicon oxide, such as an organosilicate glass, is disclosed. Subsequent plasma processing has been observed to break bonds in such an insulating layer (40), resulting in molecules at the surface of the film with dangling bonds. Eventually, the damaged insulating layer (40) includes silanol molecules, which results in a degraded film. The disclosed method exposes the damaged insulating layer (40) to a thermally or plasma activated fluorine, hydrogen, or nitrogen, which reacts with the damaged molecules to form a passivated surface for the insulating layer (40).
    Type: Grant
    Filed: February 4, 2003
    Date of Patent: January 4, 2005
    Assignee: Texas Instruments Incorporated
    Inventors: Changming Jin, Phillip D. Matz, Heungsoo Park, Patricia B. Smith, Andrew J. McKerrow
  • Patent number: 6831008
    Abstract: A process for forming nickel silicide and silicon nitride structure in a semiconductor integrated circuit device is described. Good adhesion between the nickel silicide and the silicon nitride is accomplished by passivating the nickel suicide surface with nitrogen. The passivation may be performed by treating the nickel silicide surface with plasma activated nitrogen species. An alternative passivation method is to cover the nickel silicide with a film of metal nitride and heat the substrate to about 500° C. Another alternative method is to sputter deposit silicon nitride on top of nickel silicide.
    Type: Grant
    Filed: September 30, 2002
    Date of Patent: December 14, 2004
    Assignee: Texas Instruments Incorporated
    Inventors: Jiong-Ping Lu, Glenn J. Tessmer, Melissa M. Hewson, Donald S. Miles, Ralf B. Willecke, Andrew J. McKerrow, Brian K. Kirkpatrick, Clinton L. Montgomery
  • Publication number: 20040150012
    Abstract: A method of forming an integrated circuit including an organosilicate low dielectric constant insulating layer (40) formed of a substitution group depleted silicon oxide, such as an organosilicate glass, is disclosed. Subsequent plasma processing has been observed to break bonds in such an insulating layer (40), resulting in molecules at the surface of the film with dangling bonds. Eventually, the damaged insulating layer (40) includes silanol molecules, which results in a degraded film. The disclosed method exposes the damaged insulating layer (40) to a thermally or plasma activated fluorine, hydrogen, or nitrogen, which reacts with the damaged molecules to form a passivated surface for the insulating layer (40).
    Type: Application
    Filed: February 4, 2003
    Publication date: August 5, 2004
    Applicant: Texas Instruments Incorporated
    Inventors: Changming Jin, Phillip D. Matz, Heungsoo Park, Patricia B. Smith, Andrew J. McKerrow
  • Publication number: 20040152296
    Abstract: A method of forming an organosilicate low dielectric constant insulating layer (40) in an integrated circuit, and an integrated circuit structure having such a low-k insulating layer (40), are disclosed. In the case where the low-k dielectric material of the insulating layer (40) comprises an organosilicate glass, subsequent plasma processing has been observed to break bonds between silicon and organic moieties, either by replacing an organic group with a hydroxyl group or with hydrogen, or by leaving a dangling bond. Eventually, the damaged insulating layer (40) includes silanol molecules, which results in a degraded film. The disclosed method exposes the damaged insulating layer (40) to a silylation agent such as hexamethyldisilazane, which reacts with the damaged molecules, and forms molecules that restore the properties of the film.
    Type: Application
    Filed: February 4, 2003
    Publication date: August 5, 2004
    Applicant: Texas Instruments Incorporated
    Inventors: Phillip D. Matz, Patricia B. Smith, Heungsoo Park, Changming Jin, Andrew J. McKerrow
  • Patent number: 6720247
    Abstract: A low-k dielectric layer (104) is treated with a dry H2 plasma pretreatment to improve patterning. Resist poisoning occurs due to an interaction between low-k films (104), such as OSG, and DUV resist (130). The H2 plasma pre-treatment is performed to either pretreat a low-k dielectric (104) before forming the pattern (130) or during a rework of the pattern (130).
    Type: Grant
    Filed: October 25, 2001
    Date of Patent: April 13, 2004
    Assignee: Texas Instruments Incorporated
    Inventors: Brian K. Kirkpatrick, Michael Morrison, Andrew J. McKerrow, Kenneth J. Newton, Dirk N. Anderson
  • Publication number: 20040061184
    Abstract: A process for forming nickel silicide and silicon nitride structure in a semiconductor integrated circuit device is described. Good adhesion between the nickel silicide and the silicon nitride is accomplished by passivating the nickel suicide surface with nitrogen. The passivation may be performed by treating the nickel silicide surface with plasma activated nitrogen species. An alternative passivation method is to cover the nickel silicide with a film of metal nitride and heat the substrate to about 500° C. Another alternative method is to sputter deposit silicon nitride on top of nickel silicide.
    Type: Application
    Filed: September 30, 2002
    Publication date: April 1, 2004
    Inventors: Jiong-Ping Lu, Glenn J. Tessmer, Melissa M. Hewson, Donald S. Miles, Ralf B. Willecke, Andrew J. McKerrow, Brian K. Kirkpatrick, Clinton L. Montgomery
  • Publication number: 20030224585
    Abstract: One aspect of the invention relates to a method of removing contaminants from a low-k film. The method involves forming a sacrificial layer over the contaminated film. The contaminants combine with the sacrificial layer and are removed by etching away the sacrificial layer. An effective material for the sacrificial layer is, for example, a silicon carbide. The method can be used to prevent the occurrence of pattern defects in chemically amplified photoresists formed over low-k films.
    Type: Application
    Filed: May 15, 2003
    Publication date: December 4, 2003
    Inventors: David Gerald Farber, William Wesley Dostalik, Robert Kraft, Andrew J. McKerrow, Kenneth Joseph Newton, Ting Tsui
  • Patent number: 6620560
    Abstract: Plasma treating a low-k dielectric layer (104) using an oxidation reaction (e.g., O2) to improve patterning. Resist poisoning occurs due to an interaction between low-k films (104), such as OSG, and DUV resist (130, 132). The plasma treatment is performed to either pretreat a low-k dielectric (104) before forming the pattern (130, 132), during a rework of the pattern (130, 132), or between via and trench patterning to reduce resist poisoning.
    Type: Grant
    Filed: October 11, 2001
    Date of Patent: September 16, 2003
    Assignee: Texax Instruments Incorporated
    Inventors: Ping Jiang, Guoqiang Xing, Andrew J. McKerrow, Robert Kraft, Hyesook Hong
  • Publication number: 20030170992
    Abstract: One aspect of the invention relates to a method of removing contaminants from a low-k film. The method involves forming a sacrificial layer over the contaminated film. The contaminants combine with the sacrificial layer and are removed by etching away the sacrificial layer. An effective material for the sacrificial layer is, for example, a silicon carbide. The method can be used to prevent the occurrence of pattern defects in chemically amplified photoresists formed over low-k films.
    Type: Application
    Filed: March 8, 2002
    Publication date: September 11, 2003
    Inventors: David Gerald Farber, William Wesley Dostalik, Robert Kraft, Andrew J. McKerrow, Kenneth Joseph Newton, Ting Tsui
  • Publication number: 20020111037
    Abstract: A low-k dielectric layer (104) is treated with a dry-wet (D-W) or dry-wet-dry (D-W-D) process to improve patterning Resist poisoning occurs due to an interaction between low-k films (104), such as OSG, and DUV resist (130). The D-W or D-W-D treatment is performed to either pretreat a low-k dielectric (104) before forming the pattern (130) or during a rework of the pattern (130).
    Type: Application
    Filed: October 18, 2001
    Publication date: August 15, 2002
    Inventors: Brian K. Kirkpatrick, Michael Morrison, Andrew J. McKerrow, Kenneth J. Newton, Dirk N. Anderson