Patents by Inventor Andrew J. Olds

Andrew J. Olds has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240117073
    Abstract: The present invention relates to specific binding members, particularly antibodies and fragments thereof, which bind to amplified epidermal growth factor receptor (EGFR) and to the de2-7 EGFR truncation of the EGFR. In particular, the epitope recognized by the specific binding members, particularly antibodies and fragments thereof, is enhanced or evident upon aberrant post-translational modification. These specific binding members are useful in the diagnosis and treatment of cancer. The binding members of the present invention may also be used in therapy in combination with chemotherapeutics or anti-cancer agents and/or with other antibodies or fragments thereof.
    Type: Application
    Filed: April 26, 2023
    Publication date: April 11, 2024
    Inventors: Lloyd J. Old, Terrance Grant Johns, Con Panousis, Andrew M. Scott, Christoph Renner, Gerd Ritter, Achim Jungbluth, Elisabeth Stockert, Vincent Peter Collins, Webster K. Cavenee, Huei-Jen Su Huang, Antony Wilks Burgess, Edouard C. Nice, Anne Murray, George Mark
  • Publication number: 20130228073
    Abstract: Methods and apparatuses for scrubbing diesel exhaust gases produced on a ship are provided. In an embodiment, a method for scrubbing diesel exhaust gases on a ship includes providing a scrubber vessel formed with a quench zone, a scrubbing zone, and a riser. Water is passed through the scrubbing zone and into the quench zone. The exhaust gases are delivered to the quench zone through the riser and enter the quench zone at a temperature of about 175° C. to about 340° C. The method includes cooling the exhaust gases to a temperature of about 60° C. to about 70° C. in the quench zone by contacting the exhaust gases with the water. The cooled exhaust gases are then scrubbed in the scrubbing zone.
    Type: Application
    Filed: March 5, 2012
    Publication date: September 5, 2013
    Inventors: Ronald G. Patterson, Andrew J. Olds
  • Publication number: 20130228074
    Abstract: Methods and apparatuses for inhibiting backflow of liquid into an engine duct on a ship are provided. In an embodiment, a gas processing apparatus includes an engine producing exhaust gases. The apparatus also includes a processing vessel having a bottom end. The processing vessel is formed with an inlet, a riser having a riser opening, and a liquid outlet positioned between the bottom end and the riser opening. Further, a duct connects the engine to the processing vessel to flow the exhaust gases into the processing vessel. A secondary basin is positioned below the bottom end of the processing vessel. Also, a pipe connects the liquid outlet of the processing vessel to the secondary basin and is configured to flow liquid from the bottom end of the processing vessel into the secondary basin under force of gravity to prevent liquid from entering the riser opening.
    Type: Application
    Filed: March 5, 2012
    Publication date: September 5, 2013
    Inventors: Ronald G. Patterson, Andrew J. Olds
  • Publication number: 20100224070
    Abstract: The vessel apparatus processes exhaust gases and effluent seawater on a ship. Structurally, the vessel apparatus includes a vertically oriented vessel. Further, a scrubber is positioned within the vessel to remove pollutants from the exhaust gases with seawater. Also, an effluent seawater processing component is positioned in the vessel above the scrubber. Between the processing component and the scrubber is a liquid barrier that prevents effluent seawater from entering the top of the scrubber while allowing exhaust gases to pass from the scrubber to the top of the vessel. For operation of the apparatus, effluent seawater resulting from the scrubbing process is recirculated from below the scrubber to a location in the vessel above the processing component. As a result, the effluent seawater may be processed above the scrubber.
    Type: Application
    Filed: March 5, 2009
    Publication date: September 9, 2010
    Inventors: Ronald G. Patterson, Andrew J. Olds
  • Publication number: 20100224062
    Abstract: The system uses seawater to remove sulfur dioxide from shipboard diesel exhaust gases. Structurally, the system includes a single-stage countercurrent scrubber with top and bottom ends. During operation, diesel exhaust gases are introduced into the bottom end of the scrubber and flow to the top end of the scrubber. Further, seawater is fed into the top end of the scrubber and falls to the bottom end while absorbing sulfur dioxide from the diesel exhaust gases. Thereafter, the exhaust gases exit the scrubber, substantially free of sulfur dioxide. Further, the extremely acidic effluent seawater exits the scrubber and is treated with caustic. As a result, the caustic neutralizes the seawater. Also, dissolved carbon dioxide may be removed from the effluent seawater to reduce the amount of caustic required for neutralization. In addition, an oxidizer may be used to reduce the chemical oxygen demand of the effluent seawater.
    Type: Application
    Filed: March 5, 2009
    Publication date: September 9, 2010
    Inventors: Ronald Patterson, Andrew J. Olds
  • Publication number: 20100135885
    Abstract: A system removes ethanol and other organic carbons from fermentation exhaust gases. Structurally, the system includes a first scrubber with top and bottom ends. Further, the system includes a second scrubber with a top end and with a bottom end in fluid communication with the first scrubber's top end. During operation, exhaust gases are introduced into the bottom end of the first scrubber. Further, a light alcohol solvent is flowed down from the top end to the bottom end of the first scrubber. As the solvent contacts the exhaust gases, it absorbs the other organic carbons. Thereafter, the exhaust gases enter the second scrubber's bottom end. At the second scrubber's top end, water is introduced and falls into contact with the exhaust gases, absorbing the ethanol. In this manner, ethanol and other organic carbons are removed from the exhaust gases solely through absorption by solvents.
    Type: Application
    Filed: December 1, 2008
    Publication date: June 3, 2010
    Inventors: Ronald G. Patterson, Andrew J. Olds