Patents by Inventor Andrew J. Piloto

Andrew J. Piloto has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 6114986
    Abstract: Two discrete transmit/receive (T/R) channels are implemented in a single common T/R module package having the capability of providing combined functions, control and power conditioning while utilizing a single multi-cavity, multi-layer substrate comprised of high temperature cofired ceramic (HTCC) layers. The ceramic layers have outer surfaces including respective metallization patterns of ground planes and stripline conductors as well as feedthroughs or vertical vias formed therein for providing three dimensional routing of both shielded RF and DC power and logic control signals so as to configure, among other things, a pair of RF manifold signal couplers which are embedded in the substrate and which transition to a multi-pin blind mate press-on RF connector assembly at the front end of the package.
    Type: Grant
    Filed: September 23, 1998
    Date of Patent: September 5, 2000
    Assignee: Northrop Grumman Corporation
    Inventors: John W. Cassen, Stephanie A. Parks, Edward L. Rich, III, Gary N. Bonadies, Gary L. Ferrell, John S. Fisher, John W. Gipprich, John D. Gornto, Daniel J. Heffernan, David A. Herlihy, Andrew J. Piloto, Patrick K. Richard, David W. Strack, Scott K. Suko
  • Patent number: 6094161
    Abstract: Two discrete transmit/receive (T/R) channels are implemented in a single common T/R module package having the capability of providing combined functions, control and power conditioning while utilizing a single multi-cavity, multi-layer substrate comprised of high temperature cofired ceramic (HTCC) layers. The ceramic layers have outer surfaces including respective metallization patterns of ground planes and stripline conductors as well as feedthroughs or vertical vias formed therein for providing three dimensional routing of both shielded RF and DC power and logic control signals so as to configure, among other things, a pair of RF manifold signal couplers which are embedded in the substrate and which transition to a multi-pin blind mate press-on RF connector assembly at the front end of the package.
    Type: Grant
    Filed: December 8, 1999
    Date of Patent: July 25, 2000
    Assignee: Northrop Grumman Corporation
    Inventors: John W. Cassen, Stephanie A. Parks, Edward L. Rich, III, Gary N. Bonadies, Gary L. Ferrell, John S. Fisher, John W. Gipprich, John D. Gornto, Daniel J. Heffernan, David A. Herlihy, Andrew J. Piloto, Patrick K. Richard, David W. Strack, Scott K. Suko
  • Patent number: 5940031
    Abstract: A T/R module including a multilevel, multichip microwave package having a plurality of gallium arsenide monolithic microwave integrated circuit chips (MMICs) implementing RF switching elements, a variable phase shifter, a plurality of RF amplifiers, and gain trim attenuators and which are located on a planar RF assembly. The module's architecture includes shared or common MMIC circuit elements during both transmit and receive operation modes thus reducing the number of MMICs required while at the same time preloading the supply voltage regulator-modulator which supplies DC power to all the MMIC circuits without degrading T/R module efficiency.
    Type: Grant
    Filed: April 7, 1998
    Date of Patent: August 17, 1999
    Assignee: Northrop Grumman Corporation
    Inventors: Thomas R. Turlington, Patrick G. Farrell, Gerald K. Kane, Gary L. Ferrell, Scott K. Suko, Joseph A. Faulkner, Gregory K. Sinon, Francis W. Hopwood, Andrew J. Piloto
  • Patent number: 5772820
    Abstract: Materials and methods for the fabrication of high density, low temperature fired microwave ferrites for use in microwave power devices, transmission line elements, isolators, circulators, and phase shifters. Very fine (sub-micron) ferrite powders made by sol-gel methods are mixed with solvents and binders then tape-cast. Ferrite tapes in the unfired state are cut into complex shapes and may be provided with via holes. These ferrite sheets are fired discretely, or are laminated, cofired with printed metal pastes, or other active and passive ceramic tapes.
    Type: Grant
    Filed: July 25, 1996
    Date of Patent: June 30, 1998
    Assignee: Northrop Grumman Corporation
    Inventors: Karl F. Schoch, Jr., Theodore R. Vasilow, Andrew J. Piloto, Deborah P. Partlow, Kenneth C. Radford
  • Patent number: 5774025
    Abstract: A planar phase shifter formed of multiple layers of a ferrite. Selected layers of the ferrite are patterned with a conductor and the multiple layers of magnetic dielectric and conductor are cofired. The phase shifter is fabricated by first obtaining ferrite powder. Then, layers of the ferrite are made, preferably by tape casting. Next the ferrite layers are metallized by applying selected amounts of conductive metals in a selected pattern upon the tape. Selected numbers of vias are placed through selected layers of tape and conductive metal is placed in the vias to provide vertical connections through the layers. The tape layers are then stacked in a predetermined order and are laminated. The laminated stack of layers is then fired to a temperature of approximately 800.degree. C. to 1000.degree. C., sintering the laminated layers into one integrated structure.
    Type: Grant
    Filed: August 7, 1995
    Date of Patent: June 30, 1998
    Assignee: Northrop Grumman Corporation
    Inventors: John D. Adam, Steven N. Stitzer, Carol J. Painter, Michael R. Daniel, Deborah P. Partlow, Andrew J. Piloto
  • Patent number: 5769987
    Abstract: We disclose a fabrication method for integrating passive devices such as capacitors, resistors and circulators into ceramic packages for electronic systems. The method utilizes a glass or glass/ceramic as a bonding agent which is incorporated as one of the layers in the multilayer package. The integration of such passive devices eliminates the tedious mounting of these devices on the package, permitting a smaller, more reliable, less expensive and lighter weight product. This method allows the integration of passive devices having firing temperatures far different from that of the ceramic package itself, permitting combinations of materials that cannot be densified, or cofired together.
    Type: Grant
    Filed: November 20, 1996
    Date of Patent: June 23, 1998
    Assignee: Northrop Grumman Cropration
    Inventors: Stephen R. Gurkovich, Kenneth C. Radford, Alex E. Bailey, Deborah P. Partlow, Andrew J. Piloto
  • Patent number: 5757611
    Abstract: The invention provides for an electronic package having a buried passive component such as a capacitor therein, and a method for fabricating the same. The electronic package preferably includes a passive component portion which includes a plurality of layers of high K dielectric material, a signal processing portion which includes a plurality of layers of low K dielectric material, and at least one buffer layer interposed between the passive component portion and the signal processing portion. Metallization is preferably printed upon at least one of the layers of high K dielectric material and at least one of the layers of low K dielectric material. Preferably, the layers are co-fired at a temperature below approximately 1200.degree. C. to form the electronic package and each of the buffer layers contains approximately 25 to 100% barium compound.
    Type: Grant
    Filed: April 12, 1996
    Date of Patent: May 26, 1998
    Assignee: Norhtrop Grumman Corporation
    Inventors: Stephen R. Gurkovich, Theodore R. Vasilow, Andrew J. Piloto, Deborah P. Partlow, Kenneth C. Radford, Alex E. Bailey
  • Patent number: 5747873
    Abstract: A system for incorporating superconductor circuits and semiconductor circuits in multilayered structures. A carrier material is chosen that is a good thermal match with the preferred superconductor substrates. The preferred superconductor substrate materials are lanthanum aluminate, magnesium oxide and neodymium gallate. The substrate carrier material should provide adequate thermal match through the range of operating temperatures which are preferably from room temperature to 77K. The preferred carrier material is a low temperature cofired ceramic (LTCC) which allows for multilayered structures to be developed which incorporate the superconductor circuitry and the semiconductor elements. The LTCC is composed of crystalline quartz particles in a borosilicate glass matrix. The percentage of quartz may be adjusted to adjust the thermal expansion characteristics of the LTCC.
    Type: Grant
    Filed: September 27, 1996
    Date of Patent: May 5, 1998
    Assignee: Northrop Grumman Corporation
    Inventors: Salvador H. Talisa, Michael A. Janocko, Deborah P. Partlow, Andrew J. Piloto
  • Patent number: 5745076
    Abstract: A T/R module including a multilevel, multichip microwave package having a plurality of gallium arsenide monolithic microwave integrated circuit chips (MMICs) implementing RF switching elements, a variable phase shifter, a plurality of RF amplifiers, and gain trim attenuators and which are located on a planar RF assembly. The module's architecture includes shared or common MMIC circuit elements during both transmit and receive operation modes thus reducing the number of MMICs required while at the same time preloading the supply voltage regulator-modulator which supplies DC power to all the MMIC circuits without degrading T/R module efficiency.
    Type: Grant
    Filed: September 5, 1996
    Date of Patent: April 28, 1998
    Assignee: Northrop Grumman Corporation
    Inventors: Thomas R. Turlington, Patrick G. Farrell, Gerald K. Kane, Gary L. Ferrell, Scott K. Suko, Joseph A. Faulkner, Gregory K. Sinon, Francis W. Hopwood, Andrew J. Piloto
  • Patent number: 5744232
    Abstract: A thick film metallization compatible with low temperature cofired ceramics (LTCC) that displays very low microwave insertion losses commensurate with those of thin film gold. However, the disclosed metallization is applied similar to conventional metallizations by screen printing and has no limit to the number of layers achievable. The electrical performance of the metallization is attained by using a spherical metal particle shape and uniform particle size distribution in the thick film paste. The advantage of this invention is that superior microwave performance can be achieved in electronic packages without the cost and limitations imposed by thin film metallization techniques.
    Type: Grant
    Filed: July 11, 1996
    Date of Patent: April 28, 1998
    Assignee: Northrop Grumman Corporation
    Inventors: Alex Bailey, Andrew J. Piloto, Deborah P. Partlow
  • Patent number: 5683528
    Abstract: A method for forming a low temperature cofired ceramic package which is made using a multi-layered densified spherical powder formed via a sol-gel process. This densified powder is formed from layers of SiO.sub.2 reacted with trimethyl borate. The spherical powder has a preselected particle size and boron content sufficient to render the low temperature cofired ceramic package fully dense, even in the presence of a second phase filler ceramic, at a sintering temperature below 1000.degree. C. Binder material is added to the spherical powder and ceramic filler to form a plurality of tapes. A ceramic assembly is then formed by layering the plurality of tapes upon one another and firing the ceramic assembly at a temperature below 1025.degree. C. to form a fully dense cofired ceramic package. In order to form the multi-layered densified spherical powder, a silica core, which is formed using a sol-gel process, is reacted with trimethyl borate.
    Type: Grant
    Filed: June 5, 1995
    Date of Patent: November 4, 1997
    Assignee: Northrop Grumman Corporation
    Inventors: Deborah P. Partlow, Stephen R. Gurkovich, Kenneth C. Radford, Andrew J. Piloto
  • Patent number: 5515054
    Abstract: A dual mode radar transparency allowing passage of both RF radiation and IR radiation comprises an aerogel base and ceramic skin overlaying the aerogel base. The aerogel base comprises a low density ceramic material. A method of fabricating a dual mode radar transparency allowing passage of both RF radiation and IR radiation comprises the steps of preparing a colloidal dispersion of a ceramic material in a medium, increasing a concentration of the colloidal dispersion by evaporation to create a suspension, and placing the suspension in a mold. The suspension is solidified to form an aerogel and the aerogel is joined to a ceramic skin.
    Type: Grant
    Filed: April 20, 1994
    Date of Patent: May 7, 1996
    Assignee: Westinghouse Electric Corp.
    Inventors: Kenneth C. Radford, Deborah P. Partlow, Jay E. Lane, Andrew J. Piloto
  • Patent number: 5457598
    Abstract: A multi-layer capacitor comprising a stack of sheet electrodes with an insulating dielectric layer sandwiched between these layers is disclosed. The dielectric layer formed on the electrode is prepared by the "sol-gel" process.
    Type: Grant
    Filed: April 8, 1994
    Date of Patent: October 10, 1995
    Inventors: Kenneth C. Radford, Stephen R. Gurkovich, Andrew J. Piloto, Deborah P. Partlow
  • Patent number: 5382931
    Abstract: Waveguide filters having a laminated dielectric structure for resonating at a predetermined frequency and having a series of longitudinally spaced resonators. A selected plural number of individual layers of high dielectric low temperature co-fired ceramic are laminated into a monolithic structure and then plated with a conductive material. Each of the individual layers is dimensioned and the number of layers is selected so that the unit resonates at the predetermined frequency. A waveguide filter is also described where a select plural number of contiguous layers of low temperature co-fired ceramic are laminated and plated with a conductive material. A series of vertically placed vias are positioned so as to form a perimeter of a waveguide filter. A plurality of individual layers of low temperature co-fired ceramic are laminated to the monolithic structure to form a laminated unit so that electrical components and the waveguide filter can be integrated into a single package.
    Type: Grant
    Filed: December 22, 1993
    Date of Patent: January 17, 1995
    Assignee: Westinghouse Electric Corporation
    Inventors: Andrew J. Piloto, Kevin A. Leahy, Bruce A. Flanick, Kawthar A. Zaki
  • Patent number: 5359488
    Abstract: A packaging system for a standard electronic module is provided utilizing a multi-layer, low temperature, co-fired ceramic motherboard. Device packages, such as an RF device package, are formed of low temperature, low dielectric, co-fired ceramic materials. The device packages are mounted on a composite heat sink provide on one side of the motherboard. A pressure plate provide on the opposite side of the motherboard is fastened to the heat sink to compress the device package. Pressure contact interconnects are used to make contacts between the device packages and the particular conductor layer in the multilayer motherboard. The radio frequency conductor layer in the motherboard is isolated from power and control layers by ground planes provided in the motherboard.
    Type: Grant
    Filed: June 21, 1993
    Date of Patent: October 25, 1994
    Assignee: Westinghouse Electric Corporation
    Inventors: Kevin A. Leahy, Andrew J. Piloto, John G. McKinley, IV, David B. Harris, Timothy M. Fertig, Keith W. Sparks
  • Patent number: 5027255
    Abstract: A high performance, high current, miniaturized low voltage power supply is disclosed which employs a thick copper-ceramic film primary board, a direct bonded copper secondary, flexible printed circuit power inductors, the power supply has high power leadless chip carriers, hybrid rectifier packages and various electrical circuits including application specific integrated circuits for control, a turn on protection and current sharing.
    Type: Grant
    Filed: October 20, 1989
    Date of Patent: June 25, 1991
    Assignee: Westinghouse Electric Co.
    Inventors: Dan B. Zeitlin, John B. Branthover, Brian H. Smith, Andrew J. Piloto, Theresa M. Lengel, Robert R. Carlson, Jr., Lanson Y. Shum, Paul D. Hodges, Jr., Denise B. Harris