Patents by Inventor Andrew James Fleming

Andrew James Fleming has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230365264
    Abstract: An aircraft includes an aircraft heat source; a propulsion system including an electric propulsion engine, the electric propulsion engine including an electric motor and a fan rotatable by the electric motor, the electric propulsion engine further defining a fan air flowpath; a thermal management system including a heat source exchanger in thermal communication with the aircraft heat source, a heat sink exchanger in thermal communication with the fan air flowpath of the electric propulsion engine, and a thermal distribution bus extending from the heat source exchanger to the heat sink exchanger; and a control system operably connected to the thermal management system for selectively thermally coupling the heat sink exchanger with the heat source exchanger.
    Type: Application
    Filed: January 30, 2023
    Publication date: November 16, 2023
    Inventors: Nicholas Taylor Moore, Andrew James Fleming
  • Patent number: 10815890
    Abstract: Methods and devices for cooling systems (700) are provided that are in fluid communication with bleed air from a jet engine compressor. The cooling system can include: a first precooler (210) receiving bleed air from the jet engine compressor; a heat exchanger (730) downstream from the first precooler (210); a cooling system compressor (220) downstream from the first precooler (210), wherein the heat exchanger (730) and the cooling system compressor (220) are in separate flow paths from the first precooler (210); a cooling system precooler (230) downstream from the cooling system compressor (220); a VGT cooling system turbine (240) downstream from the cooling system precooler (230); and a discharge conduit (245) downstream from the cooling system turbine (240) and the heat exchanger (730). A bypass line (290) for bypassing the turbine can also be included.
    Type: Grant
    Filed: June 30, 2015
    Date of Patent: October 27, 2020
    Assignee: GENERAL ELECTRIC COMPANY
    Inventors: Kevin Richard Leamy, Benjamin Paul Breig, Michael Jay Epstein, Javier Armando Parrilla, Matthew John Hurt, Thomas Edward Brinson, Andrew James Fleming, George Eugene Wilmot
  • Patent number: 10808618
    Abstract: Methods and devices for cooling systems (100, 700) are provided that are in fluid communication with bleed air from a jet engine compressor. The cooling systems include: a first precooler (210) receiving bleed air from the jet engine compressor; a heat exchanger (730) downstream from the first precooler (210); a cooling system compressor (220) downstream from the first precooler (210), wherein the heat exchanger (730) and the cooling system compressor (220) are in separate flow paths from the first precooler (210); a cooling system precooler (230) downstream from the cooling system compressor (220); a cooling system turbine (240) with variable guide vanes—VGT—and downstream from the cooling system precooler (230); and a discharge conduit (245) downstream from the cooling system turbine (240) and the heat exchanger (730). A bypass line (290) can also be included that bypasses the cooling system turbine (240).
    Type: Grant
    Filed: June 30, 2015
    Date of Patent: October 20, 2020
    Assignee: General Electric Company
    Inventors: Kevin Richard Leamy, Benjamin Paul Breig, Michael Jay Epstein, Javier Armando Parrilla, Matthew John Hurt, Thomas Edward Brinson, Andrew James Fleming, George Eugene Wilmot, Jr.
  • Publication number: 20200180771
    Abstract: An aircraft includes an aircraft heat source; a propulsion system including an electric propulsion engine, the electric propulsion engine including an electric motor and a fan rotatable by the electric motor, the electric propulsion engine further defining a fan air flowpath; a thermal management system including a heat source exchanger in thermal communication with the aircraft heat source, a heat sink exchanger in thermal communication with the fan air flowpath of the electric propulsion engine, and a thermal distribution bus extending from the heat source exchanger to the heat sink exchanger; and a control system operably connected to the thermal management system for selectively thermally coupling the heat sink exchanger with the heat source exchanger.
    Type: Application
    Filed: December 6, 2018
    Publication date: June 11, 2020
    Inventors: Nicholas Taylor Moore, Andrew James Fleming
  • Patent number: 10247100
    Abstract: Airplanes and jet engines are provided that includes an engine compressor; a combustor in flow communication with the engine compressor; an engine turbine in flow communication with the combustor to receive combustion products from the combustor; and a bleed air cooling system in fluid communication with bleed air from the engine compressor. The bleed air cooling system can include a first precooler in fluid communication with the bleed air from the engine compressor; a cooling system turbine in fluid communication with and downstream from the first precooler; and a discharge conduit from the cooling system turbine that is configured to be in fluid communication with at least one of an aircraft thermal management system and an aircraft environmental control system. Methods are also described for providing cooling fluid from a jet engine.
    Type: Grant
    Filed: June 30, 2015
    Date of Patent: April 2, 2019
    Assignee: General Electric Company
    Inventors: Kevin Richard Leamy, Benjamin Paul Breig, Michael Jay Epstein, Javier Armando Parrilla, Matthew John Hurt, Thomas Edward Brinson, Andrew James Fleming
  • Publication number: 20180194480
    Abstract: Methods and devices for cooling systems (100, 700) are provided that are in fluid communication with bleed air from a jet engine compressor. The cooling systems include: a first precooler (210) receiving bleed air from the jet engine compressor; a heat exchanger (730) downstream from the first precooler (210); a cooling system compressor (220) downstream from the first precooler (210), wherein the heat exchanger (730) and the cooling system compressor (220) are in separate flow paths from the first precooler (210); a cooling system precooler (230) downstream from the cooling system compressor (220); a cooling system turbine (240) with variable guide vanes—VGT—and downstream from the cooling system precooler (230); and a discharge conduit (245) downstream from the cooling system turbine (240) and the heat exchanger (730). A bypass line (290) can also be included that bypasses the cooling system turbine (240).
    Type: Application
    Filed: June 30, 2015
    Publication date: July 12, 2018
    Inventors: Kevin Richard LEAMY, Benajamin Paul BREIG, Michael Jay EPSTEIN, Javier Armando PARRILLA, Matthew John Hurt, Thomas Edward BRINSON, Andrew James FLEMING, George Eugene WILMOT
  • Publication number: 20180194479
    Abstract: Methods and devices for cooling systems (700) are provided that are in fluid communication with bleed air from a jet engine compressor. The cooling system can include: a first precooler (210) receiving bleed air from the jet engine compressor; a heat exchanger (730) downstream from the first precooler (210); a cooling system compressor (220) downstream from the first precooler (210), wherein the heat exchanger (730) and the cooling system compressor (220) are in separate flow paths from the first precooler (210); a cooling system precooler (230) downstream from the cooling system compressor (220); a VGT cooling system turbine (240) downstream from the cooling system precooler (230); and a discharge conduit (245) downstream from the cooling system turbine (240) and the heat exchanger (730). A bypass line (290) for bypassing the turbine can also be included.
    Type: Application
    Filed: June 30, 2015
    Publication date: July 12, 2018
    Inventors: Kevin Richard Leamy, Benjamin Paul Breig, Michael Jay Epstein, Javier Armando Parrilla, Matthew John Hurt, Thomas Edward Brinson, Andrew James Fleming, George Eugene Wilmot
  • Publication number: 20160153359
    Abstract: Airplanes and jet engines are provided that includes an engine compressor; a combustor in flow communication with the engine compressor; an engine turbine in flow communication with the combustor to receive combustion products from the combustor; and a bleed air cooling system in fluid communication with bleed air from the engine compressor. The bleed air cooling system can include a first precooler in fluid communication with the bleed air from the engine compressor; a cooling system turbine in fluid communication with and downstream from the first precooler; and a discharge conduit from the cooling system turbine that is configured to be in fluid communication with at least one of an aircraft thermal management system and an aircraft environmental control system. Methods are also described for providing cooling fluid from a jet engine.
    Type: Application
    Filed: June 30, 2015
    Publication date: June 2, 2016
    Inventors: Kevin Richard Leamy, Benjamin Paul Breig, Michael Jay Epstein, Javier Armando Parrilla, Matthew John Hurt, Thomas Edward Brinson, Andrew James Fleming