Patents by Inventor Andrew James WHEATON

Andrew James WHEATON has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20210325498
    Abstract: A method and apparatus are provided to perform controlled aliasing in parallel imaging (CAIPI) using time shifts between the radio frequency (RF) excitation pulses and the waveform of the slice-select gradient field to shift respective sampling points within the two-dimensions of k-space corresponding to phase encoding. Thus, a CAIPI sampling pattern is generated using time shifts, rather than by modulating the RF excitation pulses or gradient fields.
    Type: Application
    Filed: April 17, 2020
    Publication date: October 21, 2021
    Applicant: CANON MEDICAL SYSTEMS CORPORATION
    Inventor: Andrew James WHEATON
  • Publication number: 20210315475
    Abstract: An apparatus and method are provided to simultaneously provide good image quality and fast image reconstruction from magnetic resonance imaging (MRI) data by selecting an appropriate value for the regularization parameter used in compressed sensing (CS) image reconstruction. In CS reconstruction a high-resolution image can be reconstructed from randomized undersampled data by imposing sparsity in multi-scale transformation (e.g., wavelet) domain. Further, in the transformation domain, a threshold can be determined between signal and noise levels of the transform coefficients. A regularization parameter based on this threshold scales the regularization term, which imposes sparsity, relative to the data fidelity term in an objective function, thereby balancing the tradeoff between noise and smoothing.
    Type: Application
    Filed: May 6, 2021
    Publication date: October 14, 2021
    Applicant: CANON MEDICAL SYSTEMS CORPORATION
    Inventors: Andrew James WHEATON, Antonios MATAKOS, Samir Dev SHARMA
  • Patent number: 11064901
    Abstract: An apparatus and method are provided to simultaneously provide good image quality and fast image reconstruction from magnetic resonance imaging (MRI) data by selecting an appropriate value for the regularization parameter used in compressed sensing (CS) image reconstruction. In CS reconstruction a high-resolution image can be reconstructed from randomized undersampled data by imposing sparsity in multi-scale transformation (e.g., wavelet) domain. Further, in the transformation domain, a threshold can be determined between signal and noise levels of the transform coefficients. A regularization parameter based on this threshold scales the regularization term, which imposes sparsity, relative to the data fidelity term in an objective function, thereby balancing the tradeoff between noise and smoothing.
    Type: Grant
    Filed: March 29, 2019
    Date of Patent: July 20, 2021
    Assignee: CANON MEDICAL SYSTEMS CORPORATION
    Inventors: Andrew James Wheaton, Antonios Matakos, Samir Dev Sharma
  • Patent number: 11041927
    Abstract: An apparatus and method of detecting a characteristic in an image is performed by obtaining, from an image capturing apparatus, raw signal data formed from a plurality of data samples and including a signal of interest captured by the image capturing apparatus and classifying, using a neural network, samples other than the signal of interest using a classifier having been determined using a first parameter based on information about the sample and a second parameter based on information identifying a position of the sample within the raw image data.
    Type: Grant
    Filed: May 13, 2020
    Date of Patent: June 22, 2021
    Assignee: CANON MEDICAL SYSTEMS CORPORATION
    Inventors: Andrew James Wheaton, Anuj Sharma
  • Publication number: 20200305756
    Abstract: An apparatus and method are provided to simultaneously provide good image quality and fast image reconstruction from magnetic resonance imaging (MRI) data by selecting an appropriate value for the regularization parameter used in compressed sensing (CS) image reconstruction. In CS reconstruction a high-resolution image can be reconstructed from randomized undersampled data by imposing sparsity in multi-scale transformation (e.g., wavelet) domain. Further, in the transformation domain, a threshold can be determined between signal and noise levels of the transform coefficients. A regularization parameter based on this threshold scales the regularization term, which imposes sparsity, relative to the data fidelity term in an objective function, thereby balancing the tradeoff between noise and smoothing.
    Type: Application
    Filed: March 29, 2019
    Publication date: October 1, 2020
    Applicant: Canon Medical Systems Corporation
    Inventors: Andrew James Wheaton, Antonios Matakos, Samir Dev Sharma
  • Patent number: 10578701
    Abstract: An MRI system includes processing circuitry configured to generate two or more RF pulses to form a spin echo, wherein each RF pulse corresponds to selecting at least two slice locations. Additionally, the MRI system encodes magnetic resonance (MR) magnetization to form echo signal data for each RF pulse, applies a set of time-shifts to a slice-selection gradient for each selected slice location, generates a pattern of slice-position-dependent moments on the echo signal data based on the set of time-shifts to the slice-selection gradient, receives image data corresponding to the echo signal data, and reconstructs the image data to form a plurality of images, wherein each of the plurality of images corresponds to one of the selected slice locations.
    Type: Grant
    Filed: October 24, 2017
    Date of Patent: March 3, 2020
    Assignee: Canon Medical Systems Corporation
    Inventor: Andrew James Wheaton
  • Patent number: 10416267
    Abstract: An apparatus and method are disclosed for determining a time origin of an input RF pulse of a plurality of input RF pulses. The method includes generating an RF echo based on the plurality of input RF pulses, a time-duration between the input RF pulses being controllable in order to determine a time instance corresponding to an ideal position of the RF echo. The method further includes acquiring a data signal corresponding to a scan of a subject, and computing a time-difference between a measured peak of the acquired data signal and the time instance corresponding to the ideal position of the RF echo, the computed time difference corresponding to a measure of a time-shift of an effective magnetic center of the input RF pulse.
    Type: Grant
    Filed: January 9, 2017
    Date of Patent: September 17, 2019
    Assignee: Canon Medical Systems Corporation
    Inventors: Andrew James Wheaton, Michael R. Thompson
  • Publication number: 20190120922
    Abstract: An MRI system includes processing circuitry configured to generate two or more RF pulses to form a spin echo, wherein each RF pulse corresponds to selecting at least two slice locations. Additionally, the MRI system encodes magnetic resonance (MR) magnetization to form echo signal data for each RF pulse, applies a set of time-shifts to a slice-selection gradient for each selected slice location, generates a pattern of slice-position-dependent moments on the echo signal data based on the set of time-shifts to the slice-selection gradient, receives image data corresponding to the echo signal data, and reconstructs the image data to form a plurality of images, wherein each of the plurality of images corresponds to one of the selected slice locations.
    Type: Application
    Filed: October 24, 2017
    Publication date: April 25, 2019
    Applicant: Toshiba Medical Systems Corporation
    Inventor: Andrew James WHEATON
  • Publication number: 20180196115
    Abstract: Described herein is an apparatus and method for determining a time origin of an input RF pulse of a plurality of input RF pulses. The method includes generating an RF echo based on the plurality of input RF pulses, a time-duration between the input RF pulses being controllable in order to determine a time instance corresponding to an ideal position of the RF echo. The method further includes acquiring a data signal corresponding to a scan of a subject, and computing a time-difference between a measured peak of the acquired data signal and the time instance corresponding to the ideal position of the RF echo, the computed time difference corresponding to a measure of a time-shift of an effective magnetic center of the input RF pulse.
    Type: Application
    Filed: January 9, 2017
    Publication date: July 12, 2018
    Applicant: Toshiba Medical Systems Corporation
    Inventors: Andrew James WHEATON, Michael R. THOMPSON