Patents by Inventor Andrew James Wirebaugh

Andrew James Wirebaugh has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8772122
    Abstract: Programmable metallization memory cells having an active electrode, an opposing inert electrode and a variable resistive element separating the active electrode from the inert electrode. The variable resistive element includes a plurality of alternating solid electrolyte layers and electrically conductive layers. The electrically conductive layers electrically couple the active electrode to the inert electrode in a programmable metallization memory cell. Methods to form the same are also disclosed.
    Type: Grant
    Filed: July 12, 2013
    Date of Patent: July 8, 2014
    Assignee: Seagate Technology LLC
    Inventors: Nurul Amin, Insik Jin, Wei Tian, Andrew James Wirebaugh, Venugopalan Vaithyanathan, Ming Sun
  • Publication number: 20130330901
    Abstract: Programmable metallization memory cells having an active electrode, an opposing inert electrode and a variable resistive element separating the active electrode from the inert electrode. The variable resistive element includes a plurality of alternating solid electrolyte layers and electrically conductive layers. The electrically conductive layers electrically couple the active electrode to the inert electrode in a programmable metallization memory cell. Methods to form the same are also disclosed.
    Type: Application
    Filed: July 12, 2013
    Publication date: December 12, 2013
    Inventors: Nurul Amin, Insik Jin, Wei Tian, Andrew James Wirebaugh, Venugopalan Vaithyanathan, Ming Sun
  • Patent number: 8487291
    Abstract: Programmable metallization memory cells having an active electrode, an opposing inert electrode and a variable resistive element separating the active electrode from the inert electrode. The variable resistive element includes a plurality of alternating solid electrolyte layers and electrically conductive layers. The electrically conductive layers electrically couple the active electrode to the inert electrode in a programmable metallization memory cell. Methods to form the same are also disclosed.
    Type: Grant
    Filed: January 30, 2009
    Date of Patent: July 16, 2013
    Assignee: Seagate Technology LLC
    Inventors: Nurul Amin, Insik Jin, Wei Tian, Andrew James Wirebaugh, Venugopalan Vaithyanathan, Ming Sun
  • Publication number: 20100193761
    Abstract: Programmable metallization memory cells having an active electrode, an opposing inert electrode and a variable resistive element separating the active electrode from the inert electrode. The variable resistive element includes a plurality of alternating solid electrolyte layers and electrically conductive layers. The electrically conductive layers electrically couple the active electrode to the inert electrode in a programmable metallization memory cell. Methods to form the same are also disclosed.
    Type: Application
    Filed: January 30, 2009
    Publication date: August 5, 2010
    Applicant: SEAGATE TECHNOLOGY LLC
    Inventors: Nurul Amin, Insik Jin, Wei Tian, Andrew James Wirebaugh, Venugopalan Vaithyanathan, Ming Sun
  • Publication number: 20100108975
    Abstract: A method and apparatus for forming a non-volatile memory cell, such as a PMC memory cell. In some embodiments, a first electrode is connected to a source while a second electrode is connected to a ground. An ionic region is located between the first and second electrodes and comprises a doping layer, composite layer, and electrolyte layer. The composite layer has a low resistive state and the electrolyte layer switches from a high resistive state to a low resistive state based on the presence of a filament.
    Type: Application
    Filed: November 5, 2008
    Publication date: May 6, 2010
    Applicant: SEAGATE TECHNOLOGY LLC
    Inventors: Ming Sun, Wei Tian, Insik Jin, Michael Xuefei Tang, Andrew James Wirebaugh