Patents by Inventor Andrew John Hammond Smith

Andrew John Hammond Smith has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20100122361
    Abstract: The present invention relates to the generation of transgenic animal cells and/or animals in which a large portion of a host animal's genome has been replaced with an equivalent syntenic portion of nucleic acid from the genome of a different organism.
    Type: Application
    Filed: January 7, 2008
    Publication date: May 13, 2010
    Inventors: Andrew John Hammond Smith, Helen Anne Chapman Wallace, Douglas Roland Higgs
  • Patent number: 6492160
    Abstract: Methods, recombinant host cells and kits are disclosed-for the production of members of specific binding pairs (sbp), e.g. antibodies, using display on the surface of secreted replicable genetic display packages (rgdps), e.g. filamentous phage. To produce a library of great diversity recombination occurs between first and second vectors comprising nucleic acid encoding first and second polypeptide chains of sbp members respectively, thereby producing recombinant vectors each encoding both a first and a second polypeptide chain component of a sbp member. The recombination may take place in vitro or intracellularly and may be site-specific, e.g. involving use of the loxP sequence and mutants thereof. Recombination may take place after prior screening or selecting for rgdps displaying sbp members which bind complementary sbp member of interest.
    Type: Grant
    Filed: June 25, 1998
    Date of Patent: December 10, 2002
    Assignees: Cambridge Antibody Technology Limited, Medical Research Council
    Inventors: Andrew David Griffiths, Samuel Cameron Williams, Peter Michael Waterhouse, Ahuva Nissim, Gregory Paul Winter, Kevin Stuart Johnson, Andrew John Hammond Smith
  • Patent number: 6291650
    Abstract: The invention provides methods and kits for producing specific binding pairs (sbp) members. Populations of polypeptide chain components of sbp members are combined to form libraries of sbps displayed by secreted replicable genetic display packages (rgdp). At least one of the polypeptide chains is expressed as a fusion with a component of an rgdp which thereby displays that polypeptide chain at the surface of rgdp. At least one population of polypeptide chains is expressed from nucleic acid which is capable of being packaged using a component of an rgdp, whereby the genetic material of rgdps produced encodes a polypeptide chain. The methods enable production of libraries of multimeric sbp members from a very large number of possible combinations. In one embodiment of the invention a method employs “chain shuffling” in the production of sbp members of desired specificity for a counterpart sbp member. Selection procedures are also described.
    Type: Grant
    Filed: June 25, 1998
    Date of Patent: September 18, 2001
    Assignees: Cambridge Antibody Technology, Ltd., Medical Research Council
    Inventors: Gregory Paul Winter, Kevin Stuart Johnson, Andrew David Griffiths, Andrew John Hammond Smith
  • Patent number: 6225447
    Abstract: Methods, recombinant host cells and kits are disclosed for the production of members of specific binding pairs (sbp), e.g. antibodies, using display on the surface of secreted replicable genetic display packages (rgdps), e.g. filamentous phage. To produce a library of great diversity, recombination occurs between first and second vectors comprising nucleic acid encoding first and second polypeptide chains of sbp members respectively, thereby producing recombinant vectors each encoding both a fist and a second polypeptide chain component of an sbp member. The recombination may take place in vitro or intracellularly and may be site-specific, e.g. involving use of the loxP sequence and mutants thereof. Recombination may take place after prior screening or selecting for rgdps displaying sbp members which bind complementary sbp member of interest.
    Type: Grant
    Filed: June 17, 1998
    Date of Patent: May 1, 2001
    Assignees: Cambridge Antibody Technology Ltd., Medical Research Council
    Inventors: Gregory Paul Winter, Kevin Stuart Johnson, Andrew David Griffiths, Andrew John Hammond Smith
  • Patent number: 6140471
    Abstract: Methods, recombinant host cells and kits are disclosed for the production of members of specific binding pairs (sbp), e.g. antibodies, using display on the surface of secreted replicable genetic display packages (rgdps), e.g. filamentous phage. To produce a library of great diversity, recombination occurs between first and second vectors comprising nucleic acid encoding first and second polypeptide chains of sbp members respectively, thereby producing recombinant vectors each encoding both a first and a second polypeptide chain component of an sbp member. The recombination may take place in vitro or intracellularly and may be site-specific, e.g. involving use of the loxP sequence and mutants thereof. Recombination may take place after prior screening or selecting for rgdps displaying sbp members which bind complementary sbp member of interest.
    Type: Grant
    Filed: March 30, 1998
    Date of Patent: October 31, 2000
    Assignees: Cambridge Antibody Technology, Ltd., Medical Research Council
    Inventors: Kevin Stuart Johnson, Gregory Paul Winter, Andrew David Griffiths, Andrew John Hammond Smith, Peter Michael Waterhouse
  • Patent number: 5962255
    Abstract: Methods, recombinant host cells and kits are disclosed for the production of members of specific binding pairs (sbp), e.g. antibodies, using display on the surface of secreted replicable genetic display packages (rgdps), e.g. filamentous phage. To produce a library of great diversity recombination occurs between first and second vectors comprising nucleic acid encoding first and second polypeptide chains of sbp members respectively, thereby producing recombinant vectors each encoding both a first and a second polypeptide chain component of a sbp member. The recombination may take place in vitro or intracellularly and may be site-specific, e.g. involving use of the loxP sequence and mutants thereof. Recombination may take place after prior screening or selecting for rgdps displaying sbp members which bind complementary sbp member of interest.
    Type: Grant
    Filed: December 5, 1994
    Date of Patent: October 5, 1999
    Assignees: Cambridge Antibody Technology Limited, Medical Research Council
    Inventors: Andrew David Griffiths, Samuel Cameron Williams, Peter Michael Waterhouse, Ahuva Nissim, Gregory Paul Winter, Kevin Stuart Johnson, Andrew John Hammond Smith
  • Patent number: 5871907
    Abstract: The invention provides methods and kits for producing specific binding pairs (sbp) members. Populations of polypeptide chain components of sbp members are combined to form libraries of sbps displayed by secreted replicable genetic display packages (rgdp). At least one of the polypeptide chains is expressed as a fusion with a component of an rgdp which thereby displays that polypeptide chain at the surface of rgdp. At least one population of polypeptide chains is expressed from nucleic acid which is capable of being packaged using a component of an rgdp, whereby the genetic material of rgdps produced encodes a polypeptide chain. The methods enable production of libraries of multimeric sbp members from a very large number of possible combinations. In one embodiment of the invention a method employs "chain shuffling" in the production of sbp members of desired specificity for a counterpart sbp member. Selection procedures are also described.
    Type: Grant
    Filed: March 31, 1994
    Date of Patent: February 16, 1999
    Assignees: Medical Research Council, Cambridge Antibody Technology Limited
    Inventors: Gregory Paul Winter, Kevin Stuart Johnson, Andrew David Griffiths, Andrew John Hammond Smith
  • Patent number: 5858657
    Abstract: The invention provides methods and kits for producing specific binding pairs (sbp) members. Populations of polypeptide chain components of sbp members are combined to form libraries of sbps displayed by secreted replicable genetic display packages (rgdp). At least one of the polypeptide chains is expressed as a fusion with a component of an rgdp which thereby displays that polypeptide chain at the surface of rgdp. At least one population of polypeptide chains is expressed from nucleic acid which is capable of being packaged using a component of an rgdp, whereby the genetic material of rgdps produced encodes a polypeptide chain. The methods enable production of libraries of multimeric sbp members from a very large number of possible combinations. In one embodiment of the invention a method employs "chain shuffling" in the production of sbp members of desired specificity for a counterpart sbp member. Selection procedures are also described.
    Type: Grant
    Filed: June 7, 1995
    Date of Patent: January 12, 1999
    Assignees: Medical Research Council, Cambridge Antibody Technology Limited
    Inventors: Gregory Paul Winter, Kevin Stuart Johnson, Andrew David Griffiths, Andrew John Hammond Smith
  • Patent number: 5733743
    Abstract: Methods, recombinant host cells and kits are disclosed for the production of members of specific binding pairs (sbp), e.g. antibodies, using display on the surface of secreted replicable genetic display packages (rgdps), e.g. filamentous phage. To produce a library of great diversity, recombination occurs between first and second vectors comprising nucleic acid encoding first and second polypeptide chains of sbp members respectively, thereby producing recombinant vectors each encoding both a first and a second polypeptide chain component of an sbp member. The recombination may take place in vitro or intracellularly and may be site-specific, e.g. involving use of the loxP sequence and mutants thereof. Recombination may take place after prior screening or selecting for rgdps displaying sbp members which bind complementary sbp member of interest.
    Type: Grant
    Filed: November 18, 1994
    Date of Patent: March 31, 1998
    Assignees: Cambridge Antibody Technology Limited, Medical Research Council
    Inventors: Kevin Stuart Johnson, Gregory Paul Winter, Andrew David Griffiths, Andrew John Hammond Smith, Peter Michael Waterhouse