Patents by Inventor Andrew John Heron

Andrew John Heron has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220389481
    Abstract: Provided herein is a method of sequencing a target double stranded nucleic acid. The method comprises contacting the double stranded nucleic acid with a reagent as described herein to form a construct and sequencing the construct using a single-molecule sequencing technique as described herein. Associated products and kits are further provided.
    Type: Application
    Filed: November 20, 2020
    Publication date: December 8, 2022
    Applicant: Oxford Nanopore Technologies PLC
    Inventors: Andrew John Heron, Rebecca Victoria Bowen, Clive Gavin Brown
  • Publication number: 20220372568
    Abstract: The invention relates to a new method of characterizing a target polynucleotide. The method uses a pore and a Hel308 helicase or a molecular motor which is capable of binding to the target polynucleotide at an internal nucleotide. The helicase or molecular motor controls the movement of the target polynucleotide through the pore.
    Type: Application
    Filed: May 31, 2022
    Publication date: November 24, 2022
    Applicant: Oxford Nanopore Technologies PLC
    Inventors: Ruth Moysey, Andrew John Heron
  • Patent number: 11466317
    Abstract: Methods of characterizing an analyte using a nanopore. One aspect features methods for characterizing a double-stranded polynucleotide using a nanopore, e.g., without using a hairpin connecting a template and a complement of the double-stranded polynucleotide. Another aspect features methods for characterizing an analyte using a tag-modified nanopore with increased sensitivity and/or higher throughput. Compositions and systems including, e.g., adaptors for attachment to double-stranded polynucleotides and tag-modified nanopores, which can be used in the methods are also provided.
    Type: Grant
    Filed: November 29, 2017
    Date of Patent: October 11, 2022
    Assignee: Oxford Nanopore Technologies PLC
    Inventors: James Clarke, James White, Richard Muscat, Jessica Mary May Knott, Ramiz Iqbal Nathani, Andrew John Heron, Mark John Bruce, Lakmal Nishantha Jayasinghe, Domenico Caprotti, David Jackson Stoddart, Rebecca Victoria Bowen, Christopher James Wright, Paul Richard Moody
  • Patent number: 11401549
    Abstract: A biochemical analysis system analyses polymers by taking measurements of a polymer from a sensor element comprising a nanopore during translocation of the polymer through the nanopore. When a polymer has partially translocated, the series of measurements is analysed using reference data derived from a reference sequence to provide a measure of similarity. Responsive to the measure of similarity, the sensor element may be selectively operated to eject the polymer and thereby make the nanopore available to receive a further polymer. Where the biochemical analysis system comprises an array of sensor elements and is takes measurements from sensor elements selected in a multiplexed manner, responsive to the measure of similarity, the biochemical analysis system ceases taking measurements from the currently selected sensor element and to starts taking measurements from a newly selected sensor element.
    Type: Grant
    Filed: May 12, 2020
    Date of Patent: August 2, 2022
    Assignee: Oxford Nanopore Technologies PLC
    Inventors: Stuart William Reid, Gavin Harper, Clive Gavin Brown, Daniel John Turner, Andrew John Heron, Christopher James Wright
  • Publication number: 20220221441
    Abstract: A biochemical sensing system senses interactions between molecular entities and nanopores using a sensor device comprising an array of sensor elements that support the nanopores. A switch arrangement selectively connects detection channels for amplifying sensed electrical signals to respective sensor elements. On the basis of an analysis of the amplified electrical signal output from the detection channels, detection of completion of interactions at sensor elements occurs. In response thereto, the switch arrangement is controlled to connect the detection channel connected to a sensor element at which completion of an interaction has been detected to a further sensor element.
    Type: Application
    Filed: May 21, 2020
    Publication date: July 14, 2022
    Applicant: Oxford Nanopore Technologies plc.
    Inventors: Andrew John Heron, Mark John Bruce
  • Publication number: 20220177937
    Abstract: The invention relates to new in vitro methods for synthesising a polymer, particularly a polynucleotide molecule, having a pre-defined sequence of units such as nucleotides. For synthesising a polynucleotide molecule the methods involve a process of extending a polynucleotide synthesis molecule with a transfer nucleotide. The methods additionally involve repeating the extension process multiple times to iteratively extend the polynucleotide molecule with multiple transfer nucleotides to generate a new polynucleotide molecule having a pre-defined nucleotide sequence. The invention also relates to in vitro methods of joining multiple synthetic polynucleotides following synthesis to form larger synthetic polynucleotides, as well as devices and systems for performing the extension, synthesis and assembly methods of the invention.
    Type: Application
    Filed: February 4, 2019
    Publication date: June 9, 2022
    Applicant: Oxford Nanopore Technologies Limited
    Inventor: Andrew John Heron
  • Publication number: 20220135956
    Abstract: The invention relates to modified Dda helicases which can be used to control the movement of polynucleotides and are particularly useful for sequencing polynucleotides.
    Type: Application
    Filed: October 13, 2021
    Publication date: May 5, 2022
    Applicant: Oxford Nanopore Technologies Ltd.
    Inventors: Andrew John Heron, Rebecca Victoria Bowen, Mark Bruce, Lakmal Jayasinghe, Joseph Hargreaves Lloyd, Szabolcs Soeroes, Elizabeth Jayne Wallace, Christopher Peter Youd
  • Publication number: 20220127669
    Abstract: The invention relates to a new method of sequencing a double stranded target polynucleotide. The two strands of the double stranded target polynucleotide are linked by a bridging moiety. The two strands of the target polynucleotide are separated using a polynucleotide binding protein and the target polynucleotide is sequenced using a transmembrane pore.
    Type: Application
    Filed: October 8, 2021
    Publication date: April 28, 2022
    Applicant: Oxford Nanopore Technologies Ltd.
    Inventors: Clive Gavin Brown, James Clarke, Graham Hall, Gavin Harper, Andrew John Heron, James White
  • Publication number: 20220090192
    Abstract: The invention relates to a new method of characterising two or more target polynucleotides using a pore. The method involves sequentially attaching to a first polynucleotide one or more subsequent polynucleotides to form a concatenated polynucleotide.
    Type: Application
    Filed: July 19, 2021
    Publication date: March 24, 2022
    Applicant: Oxford Nanopore Technologies Ltd.
    Inventors: Andrew John Heron, Daniel Ryan Garalde, James White
  • Publication number: 20220064723
    Abstract: The invention provides a method of detecting a target polynucleotide in a sample comprising: (a) contacting the sample with a guide polynucleotide that binds to a sequence in the target polynucleotide and a polynucleotide-guided effector protein, wherein the guide polynucleotide and polynucleotide-guided effector protein form a complex with any target polynucleotide present in the sample; (b) contacting the sample with a membrane comprising a transmembrane pore; (c) applying a potential to the membrane; and (d) monitoring for the presence or absence of an effect resulting from the interaction of the complex with the transmembrane pore to determine the presence or absence of the complex, thereby detecting the target polynucleotide in the sample.
    Type: Application
    Filed: June 29, 2021
    Publication date: March 3, 2022
    Applicant: Oxford Nanopore Technologies Limited
    Inventors: Andrew John HERON, James Edward GRAHAM, Richard Alexander GUTIERREZ, Rebecca Victoria BOWEN, James WHITE, Clive Gavin BROWN, Daniel George FORDHAM
  • Patent number: 11261487
    Abstract: The claimed invention relates to a method of processing a polynucleotide, by obtaining a sense polynucleotide strand comprising a homopolymeric region that is longer that the reading section of a nanopore; synthesizing an antisense polynucleotide strand under conditions in which a nucleotide analog is incorporated at random in a reverse complement of the homopolymer region, such that the length of the homopolymer region in the antisense polynucleotide strand is shorter than the reading section of the nanopore; and moving the antisense polynucleotide strand through the nanopore such that a proportion of the antisense polynucleotide strand interacts with the nanopore.
    Type: Grant
    Filed: February 5, 2020
    Date of Patent: March 1, 2022
    Assignee: Oxford Nanopore Technologies PLC
    Inventors: Clive Gavin Brown, James Anthony Clarke, Graham Hall, Gavin Harper, Andrew John Heron, James White
  • Publication number: 20220056517
    Abstract: A system for characterising a target polynucleotide, the system comprising a membrane and a pore complex; wherein the pore complex comprises: (i) a nanopore located in the membrane, and (ii) an auxiliary protein or peptide attached to the nanopore; wherein the nanopore and the auxiliary protein or peptide together form a continuous channel across the membrane, the channel comprising a first constriction region and a second constriction region; wherein the first constriction region is formed by a portion of the nanopore, and wherein the second constriction region is formed by at least a portion of the auxiliary protein or peptide.
    Type: Application
    Filed: November 7, 2019
    Publication date: February 24, 2022
    Applicants: Oxford Nanopore Technologies Limited, VIB VZW, Vrije Universiteit Brussel
    Inventors: Han Remaut, Sander Van Der Verren, Nani Van Gerven, Lakmal Nishantha Jayasinghe, Elizabeth Jayne Wallace, Pratik Raj Singh, Richard George Hambley, Michael Robert Jordan, John Joseph Kilgour, Andrew John Heron
  • Publication number: 20220042967
    Abstract: Provided herein are methods of encoding data on a polymer. Also provided are methods of reading data encoded on a polymer. Also provided are systems for encoding data on a polymer; systems for reading data encoded on a polymer; and data encoding/data reading platforms.
    Type: Application
    Filed: December 20, 2019
    Publication date: February 10, 2022
    Applicant: Oxford Nanopore Technologies Limited
    Inventors: Clive Gavin Brown, Andrew John Heron, James Edward Graham
  • Publication number: 20220001386
    Abstract: The invention relates to a sensing system comprising an electrowetting device, which electrowetting device comprises an array of actuation electrodes, and a control system configures to perform droplet operations on a system of droplets present in the sensing system. The invention also relates to a method of operating the sensing system of the invention. The invention also provides novel droplet constructs which can be made and manipulated in the sensing system of the invention.
    Type: Application
    Filed: November 28, 2019
    Publication date: January 6, 2022
    Applicant: Oxford Nanopore Technologies Limited
    Inventors: Matthew Holden, Andrew John Heron
  • Publication number: 20210395811
    Abstract: The invention relates to a new method of characterising a target RNA polynucleotide by taking one or more measurements as the target RNA polynucleotide moves with respect to a transmembrane pore. The movement is controlled by a DNA helicase. The invention also relates to a modified RNA construct wherein the RNA polynucleotide has been modified to increase DNA helicase binding thereto.
    Type: Application
    Filed: April 30, 2021
    Publication date: December 23, 2021
    Applicant: Oxford Nanopore Technologies Ltd.
    Inventors: Daniel Ryan Garalde, Andrew John Heron, Lakmal Jayasinghe, Daniel John Turner, James White
  • Publication number: 20210363577
    Abstract: Methods of characterizing an analyte using a detector such as a nanopore and an enzyme are provided. One aspect features methods for characterizing a double-stranded polynucleotide using a detector, e.g., without using a hairpin connecting a template and a complement of the double-stranded polynucleotide. Another aspect features methods for characterizing an analyte using a tag-modified nanopore with increased sensitivity and/or higher throughput. Compositions and systems including, e.g., adaptors for attachment to double-stranded polynucleotides and tag-modified nanopores, which can be used in the methods are also provided.
    Type: Application
    Filed: June 6, 2019
    Publication date: November 25, 2021
    Applicant: Oxford Nanopore Technologies Limited
    Inventors: James Anthony Clarke, James White, Richard Muscat, Jessica Mary May Johnson, Ramiz Iqbal Nathani, Andrew John Heron, Mark John Bruce, Lakmal Nishantha Jayasinghe, Domenico Caprotti, David Jackson Stoddart, Rebecca Victoria Bowen, Christopher James Wright, Paul Richard Moody
  • Patent number: 11180741
    Abstract: The invention relates to modified Dda helicases which can be used to control the movement of polynucleotides and are particularly useful for sequencing polynucleotides.
    Type: Grant
    Filed: October 6, 2015
    Date of Patent: November 23, 2021
    Assignee: Oxford Nanopore Technologies Ltd.
    Inventors: Andrew John Heron, Rebecca Victoria Bowen, Mark Bruce, Lakmal Jayasinghe, Joseph Hargreaves Lloyd, Szabolcs Soeroes, Elizabeth Jayne Wallace, Christopher Peter Youd
  • Patent number: 11168363
    Abstract: The invention relates to a new method of sequencing a double stranded target polynucleotide. The two strands of the double stranded target polynucleotide are linked by a bridging moiety. The two strands of the target polynucleotide are separated using a polynucleotide binding protein and the target polynucleotide is sequenced using a transmembrane pore.
    Type: Grant
    Filed: May 31, 2019
    Date of Patent: November 9, 2021
    Assignee: Oxford Nanopore Technologies Ltd.
    Inventors: Clive Gavin Brown, James Anthony Clarke, Graham Hall, Gavin Harper, Andrew John Heron, James White
  • Publication number: 20210324020
    Abstract: The invention relates to mutant forms of lysenin. The invention also relates to analyte characterisation using lysenin.
    Type: Application
    Filed: December 1, 2020
    Publication date: October 21, 2021
    Applicant: Oxford Nanopore Technologies Limited
    Inventors: Mark Bruce, James Anthony Clarke, Andrew John Heron, Lakmal Jayasinghe, Elizabeth Jayne Wallace
  • Patent number: 11098355
    Abstract: The invention relates to a new method of characterising two or more target polynucleotides using a pore. The method involves sequentially attaching to a first polynucleotide one or more subsequent polynucleotides to form a concatenated polynucleotide.
    Type: Grant
    Filed: May 25, 2017
    Date of Patent: August 24, 2021
    Assignee: Oxford Nanopore Technologies Ltd.
    Inventors: Andrew John Heron, Daniel Ryan Garalde, James White