Patents by Inventor Andrew Joo Kim

Andrew Joo Kim has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8565681
    Abstract: Embodiments of the invention may provide for reducing interference in the front-end of a communications receiver. The cancellation circuitry may be utilized in conjunction with a preliminary rejection filter for improved rejection of out-of-band interference from other radio services or circuitry. The cancellation circuit may be placed in parallel with the preliminary rejection filter and may enhance suppression at the interference frequency by matching the gain and phase of the preliminary rejection filter prior to subtracting the matched signal from the preliminary rejection filter output. The cancellation circuit need not necessary know beforehand the characteristics of the preliminary rejection filter, the interference source, or the coupling mechanism, as it may adapt to unknown or varying interferers by adapting the matching gain and phase values based on the output of the preliminary rejection filter at tap points occurring both before and after application of the cancellation signal.
    Type: Grant
    Filed: March 25, 2010
    Date of Patent: October 22, 2013
    Assignee: Samsung Electro-Mechanics
    Inventors: Andrew Joo Kim, Yunseo Park, Seongmo Yim, Youngsik Hur
  • Patent number: 8521090
    Abstract: Embodiments of the invention may provide for reducing interference in the front-end of a communications receiver. The cancellation circuitry may be utilized in conjunction with a preliminary rejection filter for improved rejection of out-of-band interference from other radio services or circuitry. The cancellation circuit may be placed in parallel with the preliminary rejection filter and may enhance suppression at the interference frequency by matching the gain and phase of the preliminary rejection filter prior to subtracting the matched signal from the preliminary rejection filter output. The cancellation circuit need not necessary know beforehand the characteristics of the preliminary rejection filter, the interference source, or the coupling mechanism, as it may adapt to unknown or varying interferers by adapting the matching gain and phase values based on the output of the preliminary rejection filter at tap points occurring both before and after application of the cancellation signal.
    Type: Grant
    Filed: March 25, 2010
    Date of Patent: August 27, 2013
    Assignee: Samsung Electro-Mechanics
    Inventors: Andrew Joo Kim, Yunseo Park, Seongmo Yim, Youngsik Hur
  • Patent number: 8503940
    Abstract: A method for interference suppression, including receiving a sample of an aggressor communication signal from a sensor embedded in a flex circuit, emulating interference that the aggressor communication signal imposes on a victim communication signal, and suppressing the imposed interference in response to applying the emulated interference to the victim communication signal. In other aspects, the flex circuit comprises a plurality of traces running substantially parallel to one another along a surface of the flex circuit, and the sensor comprises one of the plurality of traces and one of a plurality of traces of another flex circuit. In still other aspects, the flex circuit comprises a plurality of traces running substantially parallel to one another and the sensor comprises a trace of the flex circuit running perpendicular to the plurality of traces running substantially parallel to one another.
    Type: Grant
    Filed: February 15, 2012
    Date of Patent: August 6, 2013
    Assignee: Quellan, Inc.
    Inventors: Edward Gebara, Andrew Joo Kim, Joy Laskar, Anthony Stelliga, Emmanouil M. Tentzeris
  • Publication number: 20130154704
    Abstract: A circuit can compensate for intra pair skew or mode conversion in a channel by applying a second or corrective mode conversion effect that counters the channel's mode conversion. The circuit can process the common mode signal with a frequency dependent filter prior to injection back into the differential mode. The circuit can implement the reverse mode conversion with passive circuits using integrated resistors and metal oxide semiconductor (MOS) switches. In certain embodiments, such actions can proceed effectively without necessarily consuming active power.
    Type: Application
    Filed: September 7, 2012
    Publication date: June 20, 2013
    Inventors: Andrew Joo Kim, Gwilym Luff
  • Patent number: 8311168
    Abstract: A Signal Conditioning Filter (SCF) and a Signal Integrity Unit (SIU) address the coupled problem of equalization and noise filtering in order to improve signal fidelity for decoding. Specifically, a received signal can be filtered in a manner to optimize the signal fidelity even in the presence of both significant (large magnitudes of) ISI and noise. The present invention can provide an adaptive method that continuously monitors a signal fidelity measure. Monitoring the fidelity of a multilevel signal can be performed by external means such as by the SIU. A received signal y(t) can be “conditioned” by application of a filter with an electronically adjustable impulse response g(t). A resulting output z(t) can then be interrogated to characterize the quality of the conditioned signal. This fidelity measure q(t) can be used to adjust the filter response to maximize the fidelity measure of the conditioned signal.
    Type: Grant
    Filed: August 11, 2009
    Date of Patent: November 13, 2012
    Assignee: Quellan, Inc.
    Inventors: Andrew Joo Kim, Vincent Mark Hietala, Sanjay Bajekal
  • Patent number: 8219893
    Abstract: A method and system using the principle of generalized maximum likelihood estimation to resolve sample timing uncertainties that are associated with the decoding of communication signals. By using generalized maximum likelihood estimation, sample timing uncertainty can be resolved by taking multiple samples of the received signal within a symbol period and determining which sample best corresponds to the optimal sample timing. The sample which best corresponds to the optimal sample timing can be determined from a timing index which can be calculated from ambiguity indicators that are based on the samples of the received signal.
    Type: Grant
    Filed: March 29, 2011
    Date of Patent: July 10, 2012
    Assignee: Quellan, Inc.
    Inventors: Andrew Joo Kim, Stephen E. Ralph, Sanjay Bajekal
  • Publication number: 20120149306
    Abstract: A method for interference suppression, including receiving a sample of an aggressor communication signal from a sensor embedded in a flex circuit, emulating interference that the aggressor communication signal imposes on a victim communication signal, and suppressing the imposed interference in response to applying the emulated interference to the victim communication signal. In other aspects, the flex circuit comprises a plurality of traces running substantially parallel to one another along a surface of the flex circuit, and the sensor comprises one of the plurality of traces and one of a plurality of traces of another flex circuit. In still other aspects, the flex circuit comprises a plurality of traces running substantially parallel to one another and the sensor comprises a trace of the flex circuit running perpendicular to the plurality of traces running substantially parallel to one another.
    Type: Application
    Filed: February 15, 2012
    Publication date: June 14, 2012
    Inventors: Edward Gebara, Andrew Joo Kim, Joy Laskar, Anthony Stelliga, Emmanouil M. Tentzeris
  • Patent number: 8135350
    Abstract: A system for suppressing interference imposed on a victim communication signal by an aggressor communication signal including a circuit that comprises an input port, an output port, and a signal processing circuit connected between the input port and the output port, the signal processing circuit being operative to produce an interference compensation signal at the output port, for application to the victim communication signal, via processing a sample of the aggressor communication signal transmitted through the input port, and the input port being configured to connect to a sampling system that includes a first circuit trace running along a surface of a flex circuit of a portable wireless device that is dedicated to sensing the aggressor communication signal flowing on a second circuit trace running along the surface of the flex circuit.
    Type: Grant
    Filed: July 26, 2011
    Date of Patent: March 13, 2012
    Assignee: Quellan, Inc.
    Inventors: Edward Gebara, Andrew Joo Kim, Joy Laskar, Anthony Stelliga, Emmanouil M. Tentzeris
  • Patent number: 8068406
    Abstract: Signals propagating in one communication channel can generate crosstalk interference in another communication channel. A crosstalk cancellation device can process the signals causing the crosstalk interference and generate a crosstalk cancellation signal that can compensate for the crosstalk when applied to the channel receiving crosstalk interference. The crosstalk cancellation device can include a model of the crosstalk effect that generates a signal emulating the actual crosstalk both in form an in timing. The crosstalk cancellation device can include a controller that monitors crosstalk-compensated communication signals and adjusts the model to enhance crosstalk cancellation performance. The crosstalk cancellation device can have a mode of self configuration or calibration in which defined test signals can be transmitted on the crosstalk-generating channel and the crosstalk-receiving channel.
    Type: Grant
    Filed: October 19, 2009
    Date of Patent: November 29, 2011
    Assignee: Quellan, Inc.
    Inventors: Andrew Joo Kim, Michael G. Vrazel, Sanjay Bajekal, Charles Summers
  • Publication number: 20110281524
    Abstract: A system for suppressing interference imposed on a victim communication signal by an aggressor communication signal including a circuit that comprises an input port, an output port, and a signal processing circuit connected between the input port and the output port, the signal processing circuit being operative to produce an interference compensation signal at the output port, for application to the victim communication signal, via processing a sample of the aggressor communication signal transmitted through the input port, and the input port being configured to connect to a sampling system that includes a first circuit trace running along a surface of a flex circuit of a portable wireless device that is dedicated to sensing the aggressor communication signal flowing on a second circuit trace running along the surface of the flex circuit.
    Type: Application
    Filed: July 26, 2011
    Publication date: November 17, 2011
    Inventors: Edward Gebara, Andrew Joo Kim, Joy Laskar, Anthony Stelliga, Emmanouil M. Tentzeris
  • Publication number: 20110222635
    Abstract: A method and system using the principle of generalized maximum likelihood estimation to resolve sample timing uncertainties that are associated with the decoding of communication signals. By using generalized maximum likelihood estimation, sample timing uncertainty can be resolved by taking multiple samples of the received signal within a symbol period and determining which sample best corresponds to the optimal sample timing. The sample which best corresponds to the optimal sample timing can be determined from a timing index which can be calculated from ambiguity indicators that are based on the samples of the received signal.
    Type: Application
    Filed: March 29, 2011
    Publication date: September 15, 2011
    Inventors: Andrew Joo Kim, Stephen E. Ralph, Sanjay Bajekal
  • Patent number: 8005430
    Abstract: Signals propagating on an aggressor communication channel can cause interference in a victim communication channel. A sensor coupled to the aggressor channel can obtain a sample of the aggressor signal. The sensor can be integrated with or embedded in a system, such as a flex circuit or a circuit board, that comprises the aggressor channel. The sensor can comprise a dedicated conductor or circuit trace that is near an aggressor conductor, a victim conductor, or an EM field associated with the interference. An interference compensation circuit can receive the sample from the sensor. The interference compensation circuit can have at least two operational modes of operation. In the first mode, the circuit can actively generate or output a compensation signal that cancels, corrects, or suppresses the interference. The second mode can be a standby, idle, power-saving, passive, or sleep mode.
    Type: Grant
    Filed: March 2, 2009
    Date of Patent: August 23, 2011
    Assignee: Quellan Inc.
    Inventors: Edward Gebara, Andrew Joo Kim, Joy Laskar, Anthony Stelliga, Emmanouil M. Tentzeris
  • Publication number: 20110171920
    Abstract: Embodiments of the invention may provide for reducing interference in the front-end of a communications receiver. The cancellation circuitry may be utilized in conjunction with a preliminary rejection filter for improved rejection of out-of-band interference from other radio services or circuitry. The cancellation circuit may be placed in parallel with the preliminary rejection filter and may enhance suppression at the interference frequency by matching the gain and phase of the preliminary rejection filter prior to subtracting the matched signal from the preliminary rejection filter output. The cancellation circuit need not necessary know beforehand the characteristics of the preliminary rejection filter, the interference source, or the coupling mechanism, as it may adapt to unknown or varying interferers by adapting the matching gain and phase values based on the output of the preliminary rejection filter at tap points occurring both before and after application of the cancellation signal.
    Type: Application
    Filed: March 25, 2010
    Publication date: July 14, 2011
    Applicant: SAMSUNG ELECTRO-MECHANICS COMPANY
    Inventors: Andrew Joo Kim, Yunseo Park, Seongmo Yim, Youngsik Hur
  • Publication number: 20110171922
    Abstract: Embodiments of the invention may provide for reducing interference in the front-end of a communications receiver. The cancellation circuitry may be utilized in conjunction with a preliminary rejection filter for improved rejection of out-of-band interference from other radio services or circuitry. The cancellation circuit may be placed in parallel with the preliminary rejection filter and may enhance suppression at the interference frequency by matching the gain and phase of the preliminary rejection filter prior to subtracting the matched signal from the preliminary rejection filter output. The cancellation circuit need not necessary know beforehand the characteristics of the preliminary rejection filter, the interference source, or the coupling mechanism, as it may adapt to unknown or varying interferers by adapting the matching gain and phase values based on the output of the preliminary rejection filter at tap points occurring both before and after application of the cancellation signal.
    Type: Application
    Filed: March 25, 2010
    Publication date: July 14, 2011
    Applicant: SAMSUNG ELECTRO-MECHANICS COMPANY
    Inventors: Andrew Joo Kim, Yunseo Park, Seongmo Yim, Youngsik Hur
  • Publication number: 20110169965
    Abstract: Embodiments of the invention may provide systems and methods for detecting the presence a DTV signal such as an ATSC DTV signal. The system and methods may be applied to a received RF signal that has been down-converted to a baseband or low-IF digitized signal. The systems and methods may detect a presence of a DTV signal by searching for its characteristic pilot signal, known to reside in a fixed frequency range for all valid DTV signals. This pilot signal may be extracted by processing the baseband or low-IF signal in multiple stages. The first stage may reduce the signal information to that pertaining to the frequency band covering all valid pilot frequencies and commensurately reduces the sampling rate, and hence computational complexity of subsequent operations. A second stage may then efficiently operate on this reduced rate signal to focus on a series of particular pilot frequencies for interrogation.
    Type: Application
    Filed: November 12, 2010
    Publication date: July 14, 2011
    Applicant: SAMSUNG ELECTRO-MECHANICS COMPANY
    Inventors: Andrew Joo Kim, Seungmok Oh, Matthew Kuhn, Bob Nayar, Youngsik Hur
  • Patent number: 7934144
    Abstract: A method and system using the principle of generalized maximum likelihood estimation to resolve sample timing uncertainties that are associated with the decoding of communication signals. By using generalized maximum likelihood estimation, sample timing uncertainty can be resolved by taking multiple samples of the received signal within a symbol period and determining which sample best corresponds to the optimal sample timing. The sample which best corresponds to the optimal sample timing can be determined from a timing index which can be calculated from ambiguity indicators that are based on the samples of the received signal.
    Type: Grant
    Filed: November 12, 2003
    Date of Patent: April 26, 2011
    Assignee: Quellan, Inc.
    Inventors: Andrew Joo Kim, Stephen E. Ralph, Sanjay Bajekal
  • Publication number: 20110069604
    Abstract: A circuit can process a sample of a signal to emulate, simulate, or model an effect on the signal. Thus, an emulation circuit can produce a representation of a real-world signal transformation by processing the signal according to one or more signal processing parameters that are characteristic of the real-world signal transformation. The emulation circuit can apply analog signal processing and/or mixed signal processing to the signal. The signal processing can comprise feeding the signal through two signal paths, each having a different delay, and creating a weighted sum of the outputs of the two signal paths. The signal processing can also (or alternatively) comprise routing the signal through a network of delay elements, wherein a bank of switching or routing elements determines the route and thus the resulting delay.
    Type: Application
    Filed: August 25, 2010
    Publication date: March 24, 2011
    Applicant: Quellan, Inc.
    Inventors: Bruce C. Schmukler, Arvind Raghavan, Ziba Nami, Jyothi Emmanuel Peddi, Andrew Joo Kim, Michael G. Vrazel, Charles E. Summers
  • Patent number: 7804760
    Abstract: A circuit can process a sample of a signal to emulate, simulate, or model an effect on the signal. Thus, an emulation circuit can produce a representation of a real-world signal transformation by processing the signal according to one or more signal processing parameters that are characteristic of the real-world signal transformation. The emulation circuit can apply analog signal processing and/or mixed signal processing to the signal. The signal processing can comprise feeding the signal through two signal paths, each having a different delay, and creating a weighted sum of the outputs of the two signal paths. The signal processing can also (or alternatively) comprise routing the signal through a network of delay elements, wherein a bank of switching or routing elements determines the route and thus the resulting delay.
    Type: Grant
    Filed: August 23, 2006
    Date of Patent: September 28, 2010
    Assignee: Quellan, Inc.
    Inventors: Bruce C. Schmukler, Arvind Raghavan, Ziba Nami, Jyothi Emmanuel Peddi, Andrew Joo Kim, Michael G. Vrazel, Charles E. Summers
  • Publication number: 20100197233
    Abstract: Signals propagating on an aggressor communication channel can cause detrimental interference in a victim communication channel. A signal processing circuit can generate an interference cancellation signal that, when applied to the victim communication channel, cancels the detrimental interference. The signal processing circuit can dynamically adjust or update two or more aspects of the interference cancellation signal, such as an amplitude or gain parameter and a phase or delay parameter. Via the dynamic adjustments, the signal processing circuit can adapt to changing conditions, thereby maintaining an acceptable level of interference cancellation in a fluctuating operating environment. A control circuit that implements the parametric adjustments can have at least two modes of operation, one for adjusting the amplitude parameter and one for adjusting the phase parameter. The modes can be selectable or can be intermittently available, for example.
    Type: Application
    Filed: April 9, 2010
    Publication date: August 5, 2010
    Inventors: Andrew Joo Kim, Edward Gebara, Bruce C. Schmukler, Mark W. Dickmann, Michael F. Farrell, Michael G. Vrazel, David Anthony Stelliga, Joy Laskar, Charles E. Summers
  • Patent number: 7729431
    Abstract: A wireless communication system can comprise two or more antennas that interfere with one another via free space coupling, surface wave crosstalk, dielectric leakage, or other interference effect. The interference effect can produce an interference signal on one of the antennas. A cancellation device can suppress antenna interference by generating an estimate of the interference signal and subtracting the estimate from the interference signal. The cancellation device can generate the estimate based on sampling signals on an antenna that generates the interference or on an antenna that receives the interference. The cancellation device can comprise a model of the crosstalk effect. Transmitting test signals on the communication system can define or refine the model.
    Type: Grant
    Filed: February 8, 2008
    Date of Patent: June 1, 2010
    Assignee: Quellan, Inc.
    Inventors: Edward Gebara, Joy Laskar, Emmanouil M. Tentzeris, Andrew Joo Kim