Patents by Inventor Andrew K. Bolstad

Andrew K. Bolstad has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11050963
    Abstract: Conventional methods for imaging transient targets are constrained by a trade-off between resolution and frame rate, and transient targets moving faster than the detector frame typically result in image blurring. Imagers using digital-pixel focal plane arrays (“DFPAs”) have on-chip global pixel operation capability for extracting a single transient-feature (i.e., single-frequency discrimination) in a snapshot that depends on the number of counters implemented per pixel. However, these DFPA systems are not capable of multi-target and multi-frequency discrimination. Imagers described herein achieve multi-target transient signature discrimination orders of magnitude faster than the readout frame rate using in-pixel electronic shuttering with a known time-encoded modulation. Three-dimensional (x,y,t) data cube reconstruction is performed using compressive sensing algorithms.
    Type: Grant
    Filed: March 12, 2020
    Date of Patent: June 29, 2021
    Assignee: Massachusetts Institute of Technology
    Inventors: Brian M. Tyrrell, Christy Fernandez Cull, Andrew K. Bolstad
  • Publication number: 20200314377
    Abstract: Conventional methods for imaging transient targets are constrained by a trade-off between resolution and frame rate, and transient targets moving faster than the detector frame typically result in image blurring. Imagers using digital-pixel focal plane arrays (“DFPAs”) have on-chip global pixel operation capability for extracting a single transient-feature (i.e., single-frequency discrimination) in a snapshot that depends on the number of counters implemented per pixel. However, these DFPA systems are not capable of multi-target and multi-frequency discrimination. Imagers described herein achieve multi-target transient signature discrimination orders of magnitude faster than the readout frame rate using in-pixel electronic shuttering with a known time-encoded modulation. Three-dimensional (x,y,t) data cube reconstruction is performed using compressive sensing algorithms.
    Type: Application
    Filed: March 12, 2020
    Publication date: October 1, 2020
    Inventors: Brian M. TYRRELL, Christy Fernandez CULL, Andrew K. BOLSTAD
  • Patent number: 10616520
    Abstract: Conventional methods for imaging transient targets are constrained by a trade-off between resolution and frame rate, and transient targets moving faster than the detector frame typically result in image blurring. Imagers using digital-pixel focal plane arrays (“DFPAs”) have on-chip global pixel operation capability for extracting a single transient-feature (i.e., single-frequency discrimination) in a snapshot that depends on the number of counters implemented per pixel. However, these DFPA systems are not capable of multi-target and multi-frequency discrimination. Imagers described herein achieve multi-target transient signature discrimination orders of magnitude faster than the readout frame rate using in-pixel electronic shuttering with a known time-encoded modulation. Three-dimensional (x,y,t) data cube reconstruction is performed using compressive sensing algorithms.
    Type: Grant
    Filed: February 25, 2019
    Date of Patent: April 7, 2020
    Assignee: Massachusetts Institute of Technology
    Inventors: Brian M. Tyrrell, Christy Fernandez Cull, Andrew K. Bolstad
  • Publication number: 20190335129
    Abstract: Conventional methods for imaging transient targets are constrained by a trade-off between resolution and frame rate, and transient targets moving faster than the detector frame typically result in image blurring. Imagers using digital-pixel focal plane arrays (“DFPAs”) have on-chip global pixel operation capability for extracting a single transient-feature (i.e., single-frequency discrimination) in a snapshot that depends on the number of counters implemented per pixel. However, these DFPA systems are not capable of multi-target and multi-frequency discrimination. Imagers described herein achieve multi-target transient signature discrimination orders of magnitude faster than the readout frame rate using in-pixel electronic shuttering with a known time-encoded modulation. Three-dimensional (x,y,t) data cube reconstruction is performed using compressive sensing algorithms.
    Type: Application
    Filed: February 25, 2019
    Publication date: October 31, 2019
    Inventors: Brian M. TYRRELL, Christy Fernandez CULL, Andrew K. BOLSTAD
  • Patent number: 10367674
    Abstract: An array-based Compressed sensing Receiver Architecture (ACRA) includes an antenna array with two or more antennas connected to two or more ADCs that are clocked at two or more different sampling rates below the Nyquist rate of the incident signals. Comparison of the individual aliased outputs of the ADCs allows for estimation of signal component characteristics, including signal bandwidth, center frequency, and direction-of-arrival (DoA). Multiple digital signal processing (DSP) techniques, such as sparse fast Fourier transform (sFFT), can be employed depending on the type of detection or estimation.
    Type: Grant
    Filed: November 14, 2017
    Date of Patent: July 30, 2019
    Assignee: Massachusetts Institute of Technology
    Inventors: Andrew K. Bolstad, Jonathan D. Chisum, James E. Vian
  • Patent number: 10250831
    Abstract: Conventional methods for imaging transient targets are constrained by a trade-off between resolution and frame rate, and transient targets moving faster than the detector frame typically result in image blurring. Imagers using digital-pixel focal plane arrays (“DFPAs”) have on-chip global pixel operation capability for extracting a single transient-feature (i.e., single-frequency discrimination) in a snapshot that depends on the number of counters implemented per pixel. However, these DFPA systems are not capable of multi-target and multi-frequency discrimination. Imagers described herein achieve multi-target transient signature discrimination orders of magnitude faster than the readout frame rate using in-pixel electronic shuttering with a known time-encoded modulation. Three-dimensional (x,y,t) data cube reconstruction is performed using compressive sensing algorithms.
    Type: Grant
    Filed: August 16, 2017
    Date of Patent: April 2, 2019
    Assignee: MASSACHUSETTS INSTITUTE OF TECHNOLOGY
    Inventors: Brian M. Tyrrell, Christy Fernandez Cull, Andrew K. Bolstad
  • Publication number: 20180083816
    Abstract: An array-based Compressed sensing Receiver Architecture (ACRA) includes an antenna array with two or more antennas connected to two or more ADCs that are clocked at two or more different sampling rates below the Nyquist rate of the incident signals. Comparison of the individual aliased outputs of the ADCs allows for estimation of signal component characteristics, including signal bandwidth, center frequency, and direction-of-arrival (DoA). Multiple digital signal processing (DSP) techniques, such as sparse fast Fourier transform (sFFT), can be employed depending on the type of detection or estimation.
    Type: Application
    Filed: November 14, 2017
    Publication date: March 22, 2018
    Inventors: Andrew K. BOLSTAD, Jonathan D. CHISUM, James E. VIAN
  • Publication number: 20180035067
    Abstract: Conventional methods for imaging transient targets are constrained by a trade-off between resolution and frame rate, and transient targets moving faster than the detector frame typically result in image blurring. Imagers using digital-pixel focal plane arrays (“DFPAs”) have on-chip global pixel operation capability for extracting a single transient-feature (i.e., single-frequency discrimination) in a snapshot that depends on the number of counters implemented per pixel. However, these DFPA systems are not capable of multi-target and multi-frequency discrimination. Imagers described herein achieve multi-target transient signature discrimination orders of magnitude faster than the readout frame rate using in-pixel electronic shuttering with a known time-encoded modulation. Three-dimensional (x,y,t) data cube reconstruction is performed using compressive sensing algorithms.
    Type: Application
    Filed: August 16, 2017
    Publication date: February 1, 2018
    Inventors: Brian M. TYRRELL, Christy Fernandez CULL, Andrew K. BOLSTAD
  • Patent number: 9743024
    Abstract: Conventional methods for imaging transient targets are constrained by a trade-off between resolution and frame rate, and transient targets moving faster than the detector frame typically result in image blurring. Imagers using digital-pixel focal plane arrays (“DFPAs”) have on-chip global pixel operation capability for extracting a single transient-feature (i.e., single-frequency discrimination) in a snapshot that depends on the number of counters implemented per pixel. However, these DFPA systems are not capable of multi-target and multi-frequency discrimination. Imagers described herein achieve multi-target transient signature discrimination orders of magnitude faster than the readout frame rate using in-pixel electronic shuttering with a known time-encoded modulation. Three-dimensional (x,y,t) data cube reconstruction is performed using compressive sensing algorithms.
    Type: Grant
    Filed: July 1, 2015
    Date of Patent: August 22, 2017
    Assignee: Massachusetts Institute of Technology
    Inventors: Brian M. Tyrrell, Christy Fernandez Cull, Andrew K. Bolstad
  • Publication number: 20170041571
    Abstract: Conventional methods for imaging transient targets are constrained by a trade-off between resolution and frame rate, and transient targets moving faster than the detector frame typically result in image blurring. Imagers using digital-pixel focal plane arrays (“DFPAs”) have on-chip global pixel operation capability for extracting a single transient-feature (i.e., single-frequency discrimination) in a snapshot that depends on the number of counters implemented per pixel. However, these DFPA systems are not capable of multi-target and multi-frequency discrimination. Imagers described herein achieve multi-target transient signature discrimination orders of magnitude faster than the readout frame rate using in-pixel electronic shuttering with a known time-encoded modulation. Three-dimensional (x,y,t) data cube reconstruction is performed using compressive sensing algorithms.
    Type: Application
    Filed: July 1, 2015
    Publication date: February 9, 2017
    Inventors: Brian M. TYRRELL, Christy Fernandez CULL, Andrew K. BOLSTAD
  • Patent number: 8644437
    Abstract: A method for digital compensation of a nonlinear system comprises identifying a plurality of circuit parameters of a nonlinear system. Each circuit parameter determines a nonlinear response of the nonlinear system. A first circuit parameter is chosen from the plurality of circuit parameters. The first circuit parameter determines a first effect on the nonlinear response. The first effect is at least as large a second effect from a second circuit parameter from the plurality of circuit parameters. At least one stimulus is applied to the nonlinear system. The nonlinear response of the nonlinear system is measured in response to the at least one stimulus. A compensation architecture is synthesized to substantially linearize the nonlinear response. The compensation architecture receives the nonlinear response of the nonlinear system and provides a substantially linear response.
    Type: Grant
    Filed: September 8, 2011
    Date of Patent: February 4, 2014
    Assignee: Massachusetts Institute of Technology
    Inventors: Helen H. Kim, Merlin R. Green, Benjamin A. Miller, Andrew K. Bolstad, Andrew R. Chen, Daniel D. Santiago
  • Publication number: 20120176191
    Abstract: A method for digital compensation of a nonlinear system comprises identifying a plurality of circuit parameters of a nonlinear system. Each circuit parameter determines a nonlinear response of the nonlinear system. A first circuit parameter is chosen from the plurality of circuit parameters. The first circuit parameter determines a first effect on the nonlinear response. The first effect is at least as large a second effect from a second circuit parameter from the plurality of circuit parameters. At least one stimulus is applied to the nonlinear system. The nonlinear response of the nonlinear system is measured in response to the at least one stimulus. A compensation architecture is synthesized to substantially linearize the nonlinear response. The compensation architecture receives the nonlinear response of the nonlinear system and provides a substantially linear response.
    Type: Application
    Filed: September 8, 2011
    Publication date: July 12, 2012
    Applicant: MASSACHUSETTS INSTITUTE OF TECHNOLOGY
    Inventors: Helen H. Kim, Merlin R. Green, Benjamin A. Miller, Andrew K. Bolstad, Andrew R. Chen, Daniel D. Santiago