Patents by Inventor Andrew Kamholz

Andrew Kamholz has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7759123
    Abstract: A method and apparatus for removing concentrated spots of collected particulates from an impact collection surface, and transferring those particulates into a container suitable for preparing a liquid sample. A jet of fluid can be utilized to remove and transfer the particulates. If a liquid jet is employed, care is taken to minimize the quantity of liquid to avoid unnecessarily diluting the sample. A mechanical scraper can alternatively be employed to remove and transfer the particulates into the container. The scraper can be rinsed with liquid or vibrated to remove the particulates. Alternatively, the portion of the surface containing a specific spot of particulates can be removed and placed into a container.
    Type: Grant
    Filed: March 21, 2006
    Date of Patent: July 20, 2010
    Assignee: MesoSystems Technology, Inc.
    Inventors: Charles J. Call, Patrick T. Call, Vanessa M. Kenning, Eric Hanczyc, Andrew Kamholz
  • Patent number: 7271007
    Abstract: Methods and apparatuses are provided for determining presence and concentration of analytes by exploiting molecular binding reactions and differential diffusion rates. Analyte particles and binding particles are allowed to diffuse toward each other, and slowing of the diffusion front is detected when they meet. From the position of the diffusion front, presence and concentration of analyte particles can be determined. One embodiment provides a competitive immunoassay in a microfluidic format. This diffusion immunoassay (DIA) relies on measuring the concentration of labeled antigen along one dimension of a microchannel after allowing it to diffuse for a short time into a region containing specific antibodies. A simple microfluidic device, the T-Sensor, was used to implement a DIA to measure the concentration of phenytoin, a small drug molecule. Concentrations of analyte over the range of 50 to 1600 nM can be measured in less than a minute.
    Type: Grant
    Filed: February 18, 2003
    Date of Patent: September 18, 2007
    Assignee: University of Washington
    Inventors: Bernhard H Weigl, Paul Yager, Andrew Kamholz, Anson Hatch
  • Publication number: 20070048186
    Abstract: A method and apparatus for removing concentrated spots of collected particulates from an impact collection surface, and transferring those particulates into a container suitable for preparing a liquid sample. A jet of fluid can be utilized to remove and transfer the particulates. If a liquid jet is employed, care is taken to minimize the quantity of liquid to avoid unnecessarily diluting the sample. A mechanical scraper can alternatively be employed to remove and transfer the particulates into the container. The scraper can be rinsed with liquid or vibrated to remove the particulates. Alternatively, the portion of the surface containing a specific spot of particulates can be removed and placed into a container.
    Type: Application
    Filed: March 21, 2006
    Publication date: March 1, 2007
    Applicant: MesoSystems Technology, Inc.
    Inventors: Charles Call, Patrick Call, Vanessa Kenning, Eric Hanczyc, Andrew Kamholz
  • Patent number: 7141429
    Abstract: This invention provides methods for using liquid junction potentials to control the transport of charged particles in fluid streams that are in laminar flow within microfluidic channels. Applications of the methods of this invention include sample preconditioning (removal of interfering substances), electrophoretic separation (fractionation) of charged particles, enhanced or delayed mixing of charged particles across a fluid interface relative to diffusion only, focusing charged particles in a fluid stream in one or two dimensions, and concentration of charged reactants at a fluid interface.
    Type: Grant
    Filed: October 9, 2002
    Date of Patent: November 28, 2006
    Assignee: University of Washington
    Inventors: Matthew S. Munson, Catherine R. Cabrera, Paul Yager, Anson Hatch, Andrew Kamholz
  • Publication number: 20060257287
    Abstract: Items of mail are rapidly processed in a mail sampling system to determine if the mail is contaminated with a chemical or biological agent. The mail sampling system maintains a negative pressure in a containment chamber and includes a triggering sampler that makes a threshold determination regarding possible contamination, and a detecting sampler that obtains a sample for more detailed analysis in response to a signal from the triggering sampler. A sample of particulates collected from an item of mail is either removed for analysis or analyzed in the system to identify a contaminating agent. Optionally, the system includes an archiving sampler, which archives samples for subsequent processing and analysis, and a decontamination system, which is activated to decontaminate the mail if needed.
    Type: Application
    Filed: February 15, 2005
    Publication date: November 16, 2006
    Inventors: Charles Call, Andrew Kamholz, Eric Hanczyc
  • Publication number: 20060196771
    Abstract: This invention provides methods for using liquid junction potentials to control the transport of charged particles in fluid streams that are in laminar flow within microfluidic channels. Applications of the methods of this invention include sample preconditioning (removal of interfering substances), electrophoretic separation (fractionation) of charged particles, enhanced or delayed mixing of charged particles across a fluid interface relative to diffusion only, focusing charged particles in a fluid stream in one or two dimensions, and concentration of charged reactants at a fluid interface.
    Type: Application
    Filed: May 22, 2006
    Publication date: September 7, 2006
    Applicant: University of Washington
    Inventors: Matthew Munson, Catherine Cabrera, Paul Yager, Anson Hatch, Andrew Kamholz
  • Patent number: 7011791
    Abstract: Microfluidic devices and methods are provided for enhancing detection of a diffusion pattern formed by particles diffusing between at least two fluid streams in parallel laminar flow such that an interface is formed between them by increasing the dimension of the streams in the diffusion direction. This may be accomplished by flowing the streams through a transforming turn, or by flowing the streams through a channel having diverging walls. Devices and methods are also provided for enhancing diffusion between two streams comprising changing the interface between said streams from a narrow interface to a broad interface.
    Type: Grant
    Filed: September 18, 2001
    Date of Patent: March 14, 2006
    Assignee: University of Washington
    Inventors: Bernhard H. Weigl, Ronald L. Bardell, Andrew Kamholz, Matthew Munson, Eric Schilling, Kenneth Hawkins
  • Patent number: 6938777
    Abstract: A method and apparatus for removing concentrated spots of collected particulates from an impact collection surface, and transferring those particulates into a container suitable for preparing a liquid sample. A jet of fluid can be utilized to remove and transfer the particulates. If a liquid jet is employed, care is taken to minimize the quantity of liquid to avoid unnecessarily diluting the sample. A mechanical scraper can alternatively be employed to remove and transfer the particulates into the container. The scraper can be rinsed with liquid or vibrated to remove the particulates. Alternatively, the portion of the surface containing a specific spot of particulates can be removed and placed into a container.
    Type: Grant
    Filed: February 11, 2003
    Date of Patent: September 6, 2005
    Assignee: MesoSystems Technology, Inc.
    Inventors: Charles J. Call, Patrick T. Call, Vanessa M. Kenning, Eric Hanczyc, Andrew Kamholz
  • Patent number: 6887710
    Abstract: Items of mail are rapidly processed in a mail sampling system to determine if the mail is contaminated with a chemical or biological agent. The mail sampling system maintains a negative pressure in a containment chamber and includes a triggering sampler that makes a threshold determination regarding possible contamination, and a detecting sampler that obtains a sample for more detailed analysis in response to a signal from the triggering sampler. A sample of particulates collected from an item of mail is either removed for analysis or analyzed in the system to identify a contaminating agent. Optionally, the system includes an archiving sampler, which archives samples for subsequent processing and analysis, and a decontamination system, which is activated to decontaminate the mail if needed.
    Type: Grant
    Filed: February 1, 2002
    Date of Patent: May 3, 2005
    Assignee: MesoSystems Technology, Inc.
    Inventors: Charles J. Call, Eric Hanczyc, Andrew Kamholz
  • Patent number: 6695146
    Abstract: The present invention employs a virtual impactor to separate a flow of fluid into a major flow and a minor flow, such that the minor flow contains a higher concentration of particulates of a desired size. The minor flow is directed toward an archival surface, causing the particulates to impact against and be deposited on the archival surface. Over time, the archival surface and the virtual impactor are moved relative to one another such that particulates collected at different times are deposited as spaced-apart spots on different portions of the archival surface. The particulates are stored on the archival surface until analysis of the particulates is required. The archival surface can be coated with a material that enhances the deposition and retention of the particulates and can further be coated with materials that sustain the life of biological organism particulates deposited on the archival surface.
    Type: Grant
    Filed: September 17, 2001
    Date of Patent: February 24, 2004
    Assignee: MesoSystems Technology, Inc.
    Inventors: Charles J. Call, Patrick T. Call, Vanessa M. Kenning, Andrew Kamholz
  • Publication number: 20040016680
    Abstract: The present invention relates to a method and apparatus for removing concentrated spots of collected particulates from an impact collection surface, and transferring those particulates into a container suitable for preparing a liquid sample. A jet of fluid can be utilized to remove and transfer the particulates. If a liquid jet is employed, care is taken to minimize the quantity of liquid to avoid unnecessarily diluting the sample. A mechanical scraper can alternatively be employed to remove and transfer the particulates into the container. The scraper can be rinsed with liquid or vibrated to remove the particulates. Alternatively, the portion of the surface containing a specific spot of particulates can be removed and placed into a container.
    Type: Application
    Filed: February 11, 2003
    Publication date: January 29, 2004
    Applicant: MesoSystems Technology, Inc.
    Inventors: Charles J. Call, Patrick T. Call, Vanessa M. Kenning, Eric Hanczyc, Andrew Kamholz
  • Publication number: 20030124619
    Abstract: Methods and apparatuses are provided for determining presence and concentration of analytes by exploiting molecular binding reactions and differential diffusion rates. Analyte particles and binding particles are allowed to diffuse toward each other, and slowing of the diffusion front is detected when they meet. From the position of the diffusion front, presence and concentration of analyte particles can be determined. One embodiment provides a competitive immunoassay in a microfluidic format. This diffusion immunoassay (DIA) relies on measuring the concentration of labeled antigen along one dimension of a microchannel after allowing it to diffuse for a short time into a region containing specific antibodies. A simple microfluidic device, the T-Sensor, was used to implement a DIA to measure the concentration of phenytoin, a small drug molecule. Concentrations of analyte over the range of 50 to 1600 nM can be measured in less than a minute.
    Type: Application
    Filed: February 18, 2003
    Publication date: July 3, 2003
    Inventors: Bernhard H. Weigl, Paul Yager, Andrew Kamholz, Anson Hatch
  • Publication number: 20030102214
    Abstract: This invention provides methods for using liquid junction potentials to control the transport of charged particles in fluid streams that are in laminar flow within microfluidic channels. Applications of the methods of this invention include sample preconditioning (removal of interfering substances), electrophoretic separation (fractionation) of charged particles, enhanced or delayed mixing of charged particles across a fluid interface relative to diffusion only, focusing charged particles in a fluid stream in one or two dimensions, and concentration of charged reactants at a fluid interface.
    Type: Application
    Filed: October 9, 2002
    Publication date: June 5, 2003
    Inventors: Matthew S. Munson, Catherine R. Cabrera, Paul Yager, Anson Hatch, Andrew Kamholz
  • Patent number: 6541213
    Abstract: Methods and apparatuses are provided for determining presence and concentration of analytes by exploiting molecular binding reactions and differential diffusion rates. Analyte particles and binding particles are allowed to diffuse toward each other, and slowing of the diffusion front is detected when they meet. From the position of the diffusion front, presence and concentration of analyte particles can be determined. One embodiment provides a competitive immunoassay in a microfluidic format. This diffusion immunoassay (DIA) relies on measuring the concentration of labeled antigen along one dimension of a microchannel after allowing it to diffuse for a short time into a region containing specific antibodies. A simple microfluidic device, the T-Sensor, was used to implement a DIA to measure the concentration of phenytoin, a small drug molecule. Concentrations of analyte over the range of 50 to 1600 nM can be measured in less than a minute.
    Type: Grant
    Filed: May 19, 2000
    Date of Patent: April 1, 2003
    Assignee: University of Washington
    Inventors: Bernhard H. Weigl, Paul Yager, Andrew Kamholz, Anson Hatch
  • Patent number: 6482306
    Abstract: An electroösmotic mixing device and a method for mixing one or more fluids for use in meso- or microfluidic device applications. The mixing device provides batch or continuous mixing of one or more fluids in meso- or microfluidic channels. An electric field is generated in the channel in substantial contact with chargeable surfaces therein. No alterations of the geometry of existing flow paths need be made, and the degree of mixing in the device can be controlled by the length of the electrodes, the flow rate past the electrodes, and the voltage applied to those electrodes. The degree of mixing is affected by choice of materials for the chargeable surface (in some cases by the selection of materials or coatings for channel walls) and the ionic strength of the fluids and the type and concentration of ions in the fluids. The ionic strength of fluids to be mixed is sufficiently low to allow electroosmotic flow.
    Type: Grant
    Filed: September 22, 1999
    Date of Patent: November 19, 2002
    Assignee: University of Washington
    Inventors: Paul Yager, Mark R. Holl, Andrew Kamholz, Catherine Cabrera, Katerina Macounova
  • Publication number: 20020157993
    Abstract: The present invention employs a virtual impactor to separate a flow of fluid into a major flow and a minor flow, such that the minor flow contains a higher concentration of particulates of a desired size. The minor flow is directed toward an archival surface, causing the particulates to impact against and be deposited on the archival surface. Over time, the archival surface and the virtual impactor are moved relative to one another such that particulates collected at different times are deposited as spaced-apart spots on different portions of the archival surface. The particulates are stored on the archival surface until analysis of the particulates is required. The archival surface can be coated with a material that enhances the deposition and retention of the particulates and can further be coated with materials that sustain the life of biological organism particulates deposited on the archival surface.
    Type: Application
    Filed: September 17, 2001
    Publication date: October 31, 2002
    Applicant: MesoSystems Technology, Inc.
    Inventors: Charles J. Call, Patrick T. Call, Vanessa M. Kenning, Andrew Kamholz
  • Patent number: 6454945
    Abstract: This invention provides microfabricated systems for extraction of desired particles from a sample stream containing desired and undesired particles. The sample stream is placed in laminar flow contact with an extraction stream under conditions in which inertial effects are negligible. The contact between the two streams is maintained for a sufficient period of time to allow differential transport of the desired particles from the sample stream into the extraction stream. In a preferred embodiment the differential transport mechanism is diffusion. The extraction system of this invention coupled to a microfabricated diffusion-based mixing device and/or sensing means allows picoliter quantities of fluid to be processed or analyzed on devices no larger than silicon wafers. Such diffusion-based mixing or sensing devices are preferably channel cell systems for detecting the presence and/or measuring the quantity of analyte particles in a sample stream.
    Type: Grant
    Filed: November 1, 2000
    Date of Patent: September 24, 2002
    Assignee: University of Washington
    Inventors: Bernhard H. Weigl, Paul Yager, James P. Brody, Mark R. Holl, Fred K. Forster, Eric Altendorf, Paul C. Galambos, Margaret Kenny, David Schutte, Gregory Hixson, Diane Zebert, Andrew Kamholz, Caicai Wu
  • Publication number: 20020124664
    Abstract: Items of mail are rapidly processed in a mail sampling system to determine if the mail is contaminated with a chemical or biological agent. The mail sampling system maintains a negative pressure in a containment chamber and includes a triggering sampler that makes a threshold determination regarding possible contamination, and a detecting sampler that obtains a sample for more detailed analysis in response to a signal from the triggering sampler. A sample of particulates collected from an item of mail is either removed for analysis or analyzed in the system to identify a contaminating agent. Optionally, the system includes an archiving sampler, which archives samples for subsequent processing and analysis, and a decontamination system, which is activated to decontaminate the mail if needed.
    Type: Application
    Filed: February 1, 2002
    Publication date: September 12, 2002
    Applicant: MesoSystems Technology, Inc.
    Inventors: Charles J. Call, Eric Hanczyc, Andrew Kamholz
  • Publication number: 20020090644
    Abstract: Methods and apparatuses are provided for determining presence and concentration of analytes by exploiting molecular binding reactions and differential diffusion rates. Analyte particles and binding particles are allowed to diffuse toward each other, and slowing of the diffusion front is detected when they meet. From the position of the diffusion front, presence and concentration of analyte particles can be determined. One embodiment provides a competitive immunoassay in a microfluidic format. This diffusion immunoassay (DIA) relies on measuring the concentration of labeled antigen along one dimension of a microchannel after allowing it to diffuse for a short time into a region containing specific antibodies. A simple microfluidic device, the T-Sensor, was used to implement a DIA to measure the concentration of phenytoin, a small drug molecule. Concentrations of analyte over the range of 50 to 1600 nM can be measured in less than a minute.
    Type: Application
    Filed: February 14, 2000
    Publication date: July 11, 2002
    Inventors: Bernhard H. Weigl, Paul Yager, Andrew Kamholz, Anson Hatch
  • Patent number: 6415821
    Abstract: Magnetically actuated fluid handling devices using magnetic fluid to move one or more fluids (gases or liquids or both) through microsized flow channels are provided. Fluid handling devices include micropumps and microvalves. Magnetically actuated slugs of magnetic fluid are moved within microchannels of a microfluidic device to facilitate valving and/or pumping of fluids and no separate pump is required. The magnets used to control fluid movement can be either individual magnets moved along the flow channels or one or more arrays of magnets whose elements can be individually controlled to hold or move a magnetic slug. Fluid handling devices include those having an array of electromagnets positioned along a flow channel which are turned on and off in a predetermined pattern to move magnetic fluid slugs in desired paths in the flow channel. The fluid handling devices of the present invention can handle gases and liquids simultaneously and thus can be made to be self-priming.
    Type: Grant
    Filed: December 15, 2000
    Date of Patent: July 9, 2002
    Assignee: University of Washington
    Inventors: Andrew Kamholz, Anson Hatch, Karl Bohringer, Paul Yager