Patents by Inventor Andrew L. Haynes

Andrew L. Haynes has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11448227
    Abstract: A tool for simultaneous local stress relief of each of a multiple of linear friction welds includes a columnar track defined along an axis, the columnar track having a helical slot; and a support structure engaged with the helical slot to translate and rotate a heat treat fixture portion along the axis.
    Type: Grant
    Filed: March 2, 2021
    Date of Patent: September 20, 2022
    Assignee: Raytheon Technologies Corporation
    Inventors: Daniel A. Bales, Andrew L. Haynes, Luke H. Rettberg
  • Publication number: 20210324499
    Abstract: An alloy that may include nickel, aluminum from 4.8 wt. % to 5.15 wt. %; cobalt from 18 wt. % to 19 wt. %, chromium from 11.9 wt. % to 12.9 wt. %, molybdenum from 2.8 wt. % to 3.6 wt. %, and niobium from 0.05 wt. % to 0.1 wt. %. The alloy may further include tungsten from 0.05 wt. % to 0.1 wt. %. The alloy may further include tantalum from 0.05 wt. % to 0.1 wt. %.
    Type: Application
    Filed: May 21, 2021
    Publication date: October 21, 2021
    Applicant: RAYTHEON TECHNOLOGIES CORPORATION
    Inventors: Mario P. Bochiechio, Shiela R. Woodard, Sara Ann Beck, Andrew L. Haynes
  • Publication number: 20210180605
    Abstract: A tool for simultaneous local stress relief of each of a multiple of linear friction welds includes a columnar track defined along an axis, the columnar track having a helical slot; and a support structure engaged with the helical slot to translate and rotate a heat treat fixture portion along the axis.
    Type: Application
    Filed: March 2, 2021
    Publication date: June 17, 2021
    Applicant: Raytheon Technologies Corporation
    Inventors: Daniel A. Bales, Andrew L. Haynes, Luke H. Rettberg
  • Patent number: 10935037
    Abstract: A tool for simultaneous local stress relief of each of a multiple of linear friction welds includes a columnar track defined along an axis, the columnar track having a helical slot; and a support structure engaged with the helical slot to translate and rotate a heat treat fixture portion along the axis.
    Type: Grant
    Filed: January 5, 2018
    Date of Patent: March 2, 2021
    Assignee: Raytheon Technologies Corporation
    Inventors: Daniel A. Bales, Andrew L. Haynes, Luke H. Rettberg
  • Patent number: 10792771
    Abstract: Disclosed is a method of making an integrally bladed rotor. According to the method, a rotor disk comprising a radially outer rim surface is provided. A portion of the disk outer rim surface is removed, leaving a protrusion on the rotor disk outer rim surface. The disk with material removed is subjected to thermal processing. A blade comprising an airfoil and a base is positioned such that a base surface is in contact with the protrusion, and heat, pressure, and motion are applied between the blade and the disk to friction weld the base surface to the protrusion.
    Type: Grant
    Filed: September 12, 2017
    Date of Patent: October 6, 2020
    Assignee: RAYTHEON TECHNOLOGIES CORPORATION
    Inventors: Michael F. Machinchick, Luke H. Rettberg, Andrew L. Haynes, Janet M. Stanley, Vasisht Venkatesh, David Ulrich Furrer, James R. Murdock, Daniel Gynther, Michael J. Linden
  • Patent number: 10633731
    Abstract: A method for producing an enhanced property integrally bladed rotor includes solution heat treating a stub-containing rotor hub forging; water quenching the solution heat treated stub-containing rotor hub; aging the water quenched stub-containing rotor hub forging; linear friction welding airfoils onto each of a multiple of stubs of the stub-containing rotor hub forging; and concurrently stress relieving the linear friction welds of each of the multiple of stubs within a predefined area while ensuring that a hub inner diameter does not exceed a predetermined temperature.
    Type: Grant
    Filed: January 5, 2018
    Date of Patent: April 28, 2020
    Assignee: United Technologies Corporation
    Inventors: Daniel A. Bales, Andrew L. Haynes, Luke H. Rettberg
  • Publication number: 20200122233
    Abstract: A powder metallurgy method includes a canister that has canister walls that define a hermetic chamber that circumscribes an open central region. A metallic alloy powder is inserted into the hermetic chamber, followed by evacuating the hermetic chamber. The canister with the metallic alloy powder is then subjected to a hot isostatic pressing process that includes heating the canister and the metallic alloy powder and applying isostatic pressure to the canister. The heating and the isostatic pressure causes fusion and consolidation of the metallic alloy powder to form a solid workpiece.
    Type: Application
    Filed: October 2, 2019
    Publication date: April 23, 2020
    Inventors: Daniel A. Bales, Andrew L. Haynes
  • Publication number: 20200122234
    Abstract: A powder metallurgy method for producing a non-molybdenum-segregated article is disclosed. The method includes use of a Ni—Mo—Cr powder that has a composition in which Ni is the base element and the Mo and Cr are alloy elements. The composition comprises, by weight, at least 20% of the Mo, and the Mo is dispersed in the Ni—Mo—Cr powder. The Ni—Mo—Cr powder is inserted into a hermetic chamber of a canister, followed by evacuating the hermetic chamber. The canister with the Ni—Mo—Cr powder in the hermetic chamber is then subjected to a hot isostatic pressing process that includes heating the canister and the Ni—Mo—Cr powder and applying isostatic pressure to the canister. The heating and the isostatic pressure causes fusion and consolidation of the Ni—Mo—Cr powder to form a solid article. The Mo remains dispersed such that the solid article is non-molybdenum-segregated. The canister is then removed from the solid article.
    Type: Application
    Filed: October 2, 2019
    Publication date: April 23, 2020
    Inventors: Daniel A. Bales, Ted A. Asare, Andrew L. Haynes
  • Patent number: 10605101
    Abstract: Disclosed is a method of making an integrally bladed rotor. According to the method, a titanium alloy rotor disk with 15-50% by volume of primary alpha grains with a grain size less than 10 ?m and secondary alpha grains comprising widmanstatten grains with a grain size less than 1.0 ?m is subjected to thermal processing. After thermal processing, a blade having an airfoil and a base is positioned such that a base surface is in contact with an outer rim surface of the disk. Heat, pressure, and motion are applied between the blade and the disk to friction weld the base surface to the disk outer rim surface.
    Type: Grant
    Filed: September 12, 2017
    Date of Patent: March 31, 2020
    Assignee: UNITED TECHNOLOGIES CORPORATION
    Inventors: Michael F. Machinchick, Luke H. Rettberg, Andrew L. Haynes, Janet M. Stanley, Vasisht Venkatesh, David Ulrich Furrer, James R. Murdock, Daniel Gynther, Michael J. Linden
  • Publication number: 20190211832
    Abstract: A tool for simultaneous local stress relief of each of a multiple of linear friction welds includes a columnar track defined along an axis, the columnar track having a helical slot; and a support structure engaged with the helical slot to translate and rotate a heat treat fixture portion along the axis.
    Type: Application
    Filed: January 5, 2018
    Publication date: July 11, 2019
    Applicant: United Technologies Corporation
    Inventors: Daniel A. Bales, Andrew L. Haynes, Luke H. Rettberg
  • Publication number: 20190211433
    Abstract: A method for producing an enhanced property integrally bladed rotor includes solution heat treating a stub-containing rotor hub forging; water quenching the solution heat treated stub-containing rotor hub; aging the water quenched stub-containing rotor hub forging; linear friction welding airfoils onto each of a multiple of stubs of the stub-containing rotor hub forging; and concurrently stress relieving the linear friction welds of each of the multiple of stubs within a predefined area while ensuring that a hub inner diameter does not exceed a predetermined temperature.
    Type: Application
    Filed: January 5, 2018
    Publication date: July 11, 2019
    Applicant: United Technologies Corporation
    Inventors: Daniel A. Bales, Andrew L. Haynes, Luke H. Rettberg
  • Publication number: 20190076970
    Abstract: Disclosed is a method of making an integrally bladed rotor. According to the method, a rotor disk comprising a radially outer rim surface is provided. A portion of the disk outer rim surface is removed, leaving a protrusion on the rotor disk outer rim surface. The disk with material removed is subjected to thermal processing. A blade comprising an airfoil and a base is positioned such that a base surface is in contact with the protrusion, and heat, pressure, and motion are applied between the blade and the disk to friction weld the base surface to the protrusion.
    Type: Application
    Filed: September 12, 2017
    Publication date: March 14, 2019
    Inventors: Michael F. Machinchick, Luke H. Rettberg, Andrew L. Haynes, Janet M. Stanley, Vasisht Venkatesh, David Ulrich Furrer, James R. Murdock, Daniel Gynther, Michael J. Linden
  • Publication number: 20190078449
    Abstract: Disclosed is a method of making an integrally bladed rotor. According to the method, a titanium alloy rotor disk with 15-50% by volume of primary alpha grains with a grain size less than 10 ?m and secondary alpha grains comprising widmanstatten grains with a grain size less than 1.0 ?m is subjected to thermal processing. After thermal processing, a blade having an airfoil and a base is positioned such that a base surface is in contact with an outer rim surface of the disk. Heat, pressure, and motion are applied between the blade and the disk to friction weld the base surface to the disk outer rim surface.
    Type: Application
    Filed: September 12, 2017
    Publication date: March 14, 2019
    Inventors: Michael F. Machinchick, Luke H. Rettberg, Andrew L. Haynes, Janet M. Stanley, Vasisht Venkatesh, David Ulrich Furrer, James R. Murdock, Daniel Gynther, Michael J. Linden
  • Patent number: 9694440
    Abstract: An example method of attaching an airfoil for an integrally bladed rotor includes placing a support collar in an installed position around at least a leading edge and trailing edge of an airfoil stub to be repaired in an integrally bladed rotor. The support collar and the airfoil stub together have a midline that is positioned between opposing, laterally outer surfaces of the airfoil stub when the support collar is in the installed position. The method performs linear friction welding to add a replacement airfoil to the airfoil stub.
    Type: Grant
    Filed: October 22, 2010
    Date of Patent: July 4, 2017
    Assignee: United Technologies Corporation
    Inventors: James J. Moor, Herbert A. Chin, Greg Czeladko, Gene A. Danko, Andrew L. Haynes, Wangen Lin, Vincent Nevins, Robert P. Schaefer, Eberhardt Privitzer
  • Patent number: 9587857
    Abstract: Polymeric sheets suitable for use as solar concentrators in solar thermal devices are provided. Also provided are solar thermal devices incorporating the polymeric sheets. The polymeric sheets have two oppositely facing surfaces. A first pattern is defined in the first surface and a second pattern is defined in the second surface. The first pattern is designed to reduce the reflectance of light incident upon the first surface relative to the first surface in the absence of the first pattern and to channel incident light through the sheet onto the second surface. It does so by redirecting photons incident upon the first surface over a broad range of incident angles into transmittance angles that are more closely aligned with the surface normal of the polymeric sheet. The second pattern is designed to focus the photons transmitted to the second surface of the sheet onto a focal surface, such as a receptacle containing a heat-transfer medium.
    Type: Grant
    Filed: April 24, 2012
    Date of Patent: March 7, 2017
    Assignees: Morningside Technology Ventures Ltd, ZinniaTek Limited
    Inventors: David J. Bates, Andrew L. Haynes, Ashton C. Partridge
  • Publication number: 20140069417
    Abstract: Polymeric sheets suitable for use as solar concentrators in solar thermal devices are provided. Also provided are solar thermal devices incorporating the polymeric sheets. The polymeric sheets have two oppositely facing surfaces. A first pattern is defined in the first surface and a second pattern is defined in the second surface. The first pattern is designed to reduce the reflectance of light incident upon the first surface relative to the first surface in the absence of the first pattern and to channel incident light through the sheet onto the second surface. It does so by redirecting photons incident upon the first surface over a broad range of incident angles into transmittance angles that are more closely aligned with the surface normal of the polymeric sheet. The second pattern is designed to focus the photons transmitted to the second surface of the sheet onto a focal surface, such as a receptacle containing a heat-transfer medium.
    Type: Application
    Filed: April 24, 2012
    Publication date: March 13, 2014
    Applicants: ZinniaTek Limited, Morningside Technology Ventures Ltd
    Inventors: David J. Bates, Andrew L. Haynes, Ashton C. Partridge
  • Patent number: 8616852
    Abstract: A method of repairing a rotor blade, for example on an integrally bladed rotor, includes preparing a surface on a damaged area of the blade. The blade has first and second airfoil surfaces adjoining the prepared surface that are spaced apart a distance. An edge of a patch abuts the prepared surface to provide a weld interface defining a welding plane. First and second cover sheets respectively overlap the first and second airfoil surfaces. The first and second cover sheets adjoin the edge and the first and second airfoil surfaces. The blade, patch and first and second cover sheets are welded along the welding plane providing a welded joint at the weld interface. The first and second cover sheets are substantially unsecured to the first and second airfoil surfaces subsequent to the welding operation.
    Type: Grant
    Filed: November 25, 2009
    Date of Patent: December 31, 2013
    Assignee: United Technologies Corporation
    Inventors: Wangen Lin, Robert W. Jackson, Andrew L. Haynes, John E. Matz, Adam Quagliaroli, Samuel T. Davidson, Herbert A. Chin
  • Patent number: 8613138
    Abstract: A method is provided for repairing a damaged rotor blade on an integrally bladed rotor by removing a damaged portion of a damaged blade leaving a blade stub extending outwardly from the disk and performing a linear friction welding operation to attach a replacement blade segment to the blade stub. The rotor may be disposed operation using a linear friction welding apparatus. The method includes disposing a support collar about the blade stub and securing the support collar to the linear friction welding apparatus prior to a commencement of the bonding operation. A lower surface of the support collar is contoured to mate with a portion of an outer circumference surface of the rotor disk.
    Type: Grant
    Filed: March 19, 2010
    Date of Patent: December 24, 2013
    Assignee: United Technologies Corporation
    Inventors: Herbert A. Chin, Robert P. Schaefer, Eberhardt Privitzer, Wangen Lin, Billie W. Bunting, James J. Moor, Vincent Nevins, Andrew L. Haynes, Greg Czeladko, Kenneth T. Raczewski
  • Patent number: 8479391
    Abstract: A method of repairing an integrally bladed rotor includes the steps of placing a support collar around at least a leading and trailing edge portions of the blade stub, and performing linear friction welding to add a replacement airfoil to the blade stub. The linear friction welding is generally along a direction between the leading and trailing edges. In addition, the support collar leading and trailing edge portions are connected together.
    Type: Grant
    Filed: December 16, 2009
    Date of Patent: July 9, 2013
    Assignee: United Technologies Corporation
    Inventors: Herbert A. Chin, Robert P. Schaefer, Eberhardt Privitzer, Wangen Lin, Billie W. Bunting, James J. Moor, Vincent Nevins, Jr., Andrew L. Haynes, Greg Czeladko, Kenneth T. Raczewski
  • Publication number: 20120279066
    Abstract: A method is disclosed for welding a first metal to a Ti-6246 alloy airfoil. The method consists of depositing weld metal by fusion welding and reshaping the airfoil to predetermined dimensions. A post weld heat treatment is applied to relieve residual stresses. Surface treatment such as laser shock peening introduces residual surface compressive stresses to enhance the mechanical integrity of the airfoil.
    Type: Application
    Filed: May 6, 2011
    Publication date: November 8, 2012
    Applicant: UNITED TECHNOLOGIES CORPORATION
    Inventors: Herbert A. Chin, Robert P. Schaefer, Andrew L. Haynes, David G. Alexander, Sonia A. Martinez, Wangen Lin