Patents by Inventor Andrew M. Waite

Andrew M. Waite has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10896855
    Abstract: Disclosed are methods for forming a semiconductor device. In some embodiments, a method may include providing a gate structure atop a substrate, providing a gate spacer along a sidewall of the gate structure, and performing a first ion implant to the gate structure and the gate spacer, the first ion implant comprising a thermal implant disposed at a first non-zero angle of inclination with respect to a perpendicular to a plane of the substrate. The method may further include performing a second ion implant to the gate structure and the gate spacer, the second ion implant including a room-temperature ion implant disposed at a second non-zero angle of inclination with respect to the perpendicular to the plane of the substrate, and etching the gate structure and the gate spacer to remove just the second section of the gate spacer.
    Type: Grant
    Filed: June 10, 2019
    Date of Patent: January 19, 2021
    Assignee: APPLIED Materials, Inc.
    Inventor: Andrew M. Waite
  • Publication number: 20200388541
    Abstract: Disclosed are methods for forming a semiconductor device. In some embodiments, a method may include providing a gate structure atop a substrate, providing a gate spacer along a sidewall of the gate structure, and performing a first ion implant to the gate structure and the gate spacer, the first ion implant comprising a thermal implant disposed at a first non-zero angle of inclination with respect to a perpendicular to a plane of the substrate. The method may further include performing a second ion implant to the gate structure and the gate spacer, the second ion implant including a room-temperature ion implant disposed at a second non-zero angle of inclination with respect to the perpendicular to the plane of the substrate, and etching the gate structure and the gate spacer to remove just the second section of the gate spacer.
    Type: Application
    Filed: June 10, 2019
    Publication date: December 10, 2020
    Applicant: APPLIED Materials, Inc.
    Inventor: Andrew M. Waite
  • Patent number: 10600675
    Abstract: A method may include providing a silicon-on-insulator (SOI) substrate, the SOI substrate comprising an insulator layer and a silicon layer. The silicon layer may be disposed on the insulator layer, where the silicon layer comprises a first silicon thickness variation. The method may include forming an oxide layer on the silicon layer, where the oxide layer has a uniform thickness. The method may include selectively etching the oxide layer on the silicon layer, wherein the oxide layer comprises a first non-uniform oxide thickness. After thermal processing of the SOI substrate in an oxygen ambient, the non-uniform oxide thickness may be configured to generate a second silicon thickness variation in the silicon layer, less than the first silicon thickness variation.
    Type: Grant
    Filed: October 9, 2017
    Date of Patent: March 24, 2020
    Assignee: Varian Semiconductor Equipment Associates, Inc.
    Inventors: Andrew M. Waite, Morgan D. Evans, John Hautala
  • Patent number: 10332748
    Abstract: As etching processes become more aggressive, increased etch resistivity of the hard mask is desirable. Methods of modulating the etch rate of the mask and optionally the underlying material are disclosed. An etch rate modifying species is implanted into the hard mask after the mask etching process is completed. This etch rate modifying species increases the difference between the etch rate of the mask and the etch rate of the underlying material to help preserve the integrity of the mask during a subsequent etching process. In some embodiments, the etch rate of the mask is decreased by the etch rate modifying species. In certain embodiments, the etch rate of the underlying material is increased by the etch rate modifying species.
    Type: Grant
    Filed: February 21, 2018
    Date of Patent: June 25, 2019
    Assignee: Varian Semiconductor Equipment Associates, Inc.
    Inventors: Rajesh Prasad, Steven Robert Sherman, Andrew M. Waite, Sungho Jo, Kyu-Ha Shim, Guy Oteri, Somchintana Norasetthekul
  • Publication number: 20190027396
    Abstract: A method may include providing a silicon-on-insulator (SOI) substrate, the SOI substrate comprising an insulator layer and a silicon layer. The silicon layer may be disposed on the insulator layer, where the silicon layer comprises a first silicon thickness variation. The method may include forming an oxide layer on the silicon layer, where the oxide layer has a uniform thickness. The method may include selectively etching the oxide layer on the silicon layer, wherein the oxide layer comprises a first non-uniform oxide thickness. After thermal processing of the SOI substrate in an oxygen ambient, the non-uniform oxide thickness may be configured to generate a second silicon thickness variation in the silicon layer, less than the first silicon thickness variation.
    Type: Application
    Filed: October 9, 2017
    Publication date: January 24, 2019
    Applicant: Varian Semiconductor Equipment Associates, Inc.
    Inventors: Andrew M. Waite, Morgan D. Evans, John Hautala
  • Publication number: 20180182636
    Abstract: As etching processes become more aggressive, increased etch resistivity of the hard mask is desirable. Methods of modulating the etch rate of the mask and optionally the underlying material are disclosed. An etch rate modifying species is implanted into the hard mask after the mask etching process is completed. This etch rate modifying species increases the difference between the etch rate of the mask and the etch rate of the underlying material to help preserve the integrity of the mask during a subsequent etching process. In some embodiments, the etch rate of the mask is decreased by the etch rate modifying species. In certain embodiments, the etch rate of the underlying material is increased by the etch rate modifying species.
    Type: Application
    Filed: February 21, 2018
    Publication date: June 28, 2018
    Inventors: Rajesh Prasad, Steven Robert Sherman, Andrew M. Waite, Sungho Jo, Kyu-Ha Shim, Guy Oteri, Somchintana Norasetthekul
  • Patent number: 9934982
    Abstract: As etching processes become more aggressive, increased etch resistivity of the hard mask is desirable. Methods of modulating the etch rate of the mask and optionally the underlying material are disclosed. An etch rate modifying species is implanted into the hard mask after the mask etching process is completed. This etch rate modifying species increases the difference between the etch rate of the mask and the etch rate of the underlying material to help preserve the integrity of the mask during a subsequent etching process. In some embodiments, the etch rate of the mask is decreased by the etch rate modifying species. In certain embodiments, the etch rate of the underlying material is increased by the etch rate modifying species.
    Type: Grant
    Filed: December 21, 2015
    Date of Patent: April 3, 2018
    Assignee: Varian Semiconductor Equipment Associates, Inc.
    Inventors: Rajesh Prasad, Steven Robert Sherman, Andrew M. Waite, Sungho Jo, Kyu-Ha Shim, Guy Oteri, Somchintana Norasetthekul
  • Publication number: 20170178914
    Abstract: As etching processes become more aggressive, increased etch resistivity of the hard mask is desirable. Methods of modulating the etch rate of the mask and optionally the underlying material are disclosed. An etch rate modifying species is implanted into the hard mask after the mask etching process is completed. This etch rate modifying species increases the difference between the etch rate of the mask and the etch rate of the underlying material to help preserve the integrity of the mask during a subsequent etching process. In some embodiments, the etch rate of the mask is decreased by the etch rate modifying species. In certain embodiments, the etch rate of the underlying material is increased by the etch rate modifying species.
    Type: Application
    Filed: December 21, 2015
    Publication date: June 22, 2017
    Inventors: Rajesh Prasad, Steven Robert Sherman, Andrew M. Waite, Sungho Jo, Kyu-Ha Shim, Guy Oteri, Somchintana Norasetthekul
  • Patent number: 9679776
    Abstract: A method for the selective implantation of a workpiece is disclosed. In place of conventional photoresist, a two layer structure is used. The first layer, referred to as the protective layer, is applied directly to the workpiece and protects the workpiece from harmful etching processes. Additionally, the protective layer has limited ability to stop ions from impacting the workpiece. The second layer, referred to as the blocking layer, which is formed on a portion of the protective layer, is used to block ions from impacting the underlying workpiece. Advantageously, the blocking layer may be selectively etched without affecting the protective layer. Additionally, the protective layer can be removed without affecting the underlying workpiece. Through the use of this two layer technique, high temperature selective implants may be performed on a variety of different semiconductor devices.
    Type: Grant
    Filed: July 23, 2015
    Date of Patent: June 13, 2017
    Assignee: Varian Semiconductor Equipment Associates, Inc.
    Inventors: Andrew M. Waite, Naushad Variam
  • Publication number: 20170025277
    Abstract: A method for the selective implantation of a workpiece is disclosed. In place of conventional photoresist, a two layer structure is used. The first layer, referred to as the protective layer, is applied directly to the workpiece and protects the workpiece from harmful etching processes. Additionally, the protective layer has limited ability to stop ions from impacting the workpiece. The second layer, referred to as the blocking layer, which is formed on a portion of the protective layer, is used to block ions from impacting the underlying workpiece. Advantageously, the blocking layer may be selectively etched without affecting the protective layer. Additionally, the protective layer can be removed without affecting the underlying workpiece. Through the use of this two layer technique, high temperature selective implants may be performed on a variety of different semiconductor devices.
    Type: Application
    Filed: July 23, 2015
    Publication date: January 26, 2017
    Inventors: Andrew M. Waite, Naushad Variam
  • Patent number: 9299564
    Abstract: Various methods for implanting dopant ions into a three dimensional feature of a semiconductor wafer are disclosed. The implant temperature may be varied to insure that the three dimensional feature, after implant, has a crystalline inner core, which is surrounded by an amorphized surface layer. The crystalline core provides a template from which the crystalline structure for the rest of the feature can be regrown. In some embodiments, the implant energy and the implant temperature may each be modified to achieve the desired crystalline inner core with the surrounding amorphized surface layer.
    Type: Grant
    Filed: May 20, 2013
    Date of Patent: March 29, 2016
    Assignee: Varian Semiconductor Equipment Associates, Inc.
    Inventors: Andrew M. Waite, Stanislav S. Todorov
  • Publication number: 20150214339
    Abstract: A method to process a semiconductor device includes performing a first ion implant comprising first ions into a thin crystalline semiconductor structure, the first ion dose amorphizing a first region of the thin crystalline semiconductor structure; performing a second ion implant comprising dopant ions of a dopant species into at least the first region of the thin crystalline semiconductor structure; and performing at least one anneal of the semiconductor device after the first implant, wherein after the first and second implant and the at least one anneal, the thin crystalline semiconductor structure forms a mono-crystalline region without defects.
    Type: Application
    Filed: January 24, 2014
    Publication date: July 30, 2015
    Applicant: Varian Semiconductor Equipment Associates, Inc.
    Inventors: ANDREW M. WAITE, KALIPATNAM VIVEK RAO
  • Patent number: 9018064
    Abstract: A method of doping the polycrystalline channel in a vertical FLASH device is disclosed. This method uses a plurality of high energy ion implants to dope the channel at various depths of the channel. In some embodiments, these ion implants are performed at an angle offset from the normal direction, such that the implanted ions pass through at least a portion of the surrounding ONO stack. By passing through the ONO stack, the distribution of ranges reached by each ion may differ from that created by a vertical implant.
    Type: Grant
    Filed: July 10, 2013
    Date of Patent: April 28, 2015
    Assignee: Varian Semiconductor Equipment Associates, Inc.
    Inventors: Andrew M. Waite, Jonathan Gerald England, Rajesh Prasad
  • Publication number: 20150062772
    Abstract: An electrostatic chuck for implanting ions at high temperatures is disclosed. The electrostatic chuck includes an insulating base, with electrically conductive electrodes disposed thereon. A dielectric top layer is disposed on the electrodes. A barrier layer is disposed on the dielectric top layer so as to be between the dielectric top layer and the workpiece. This barrier layer serves to inhibit the migration of particles from the dielectric top layer to the workpiece, which is clamped on the chuck. In some embodiments, a protective layer is applied on top of the barrier layer to prevent abrasion.
    Type: Application
    Filed: August 27, 2013
    Publication date: March 5, 2015
    Inventors: Andrew M. Waite, James Carroll
  • Publication number: 20150017772
    Abstract: A method of doping the polycrystalline channel in a vertical FLASH device is disclosed. This method uses a plurality of high energy ion implants to dope the channel at various depths of the channel. In some embodiments, these ion implants are performed at an angle offset from the normal direction, such that the implanted ions pass through at least a portion of the surrounding ONO stack. By passing through the ONO stack, the distribution of ranges reached by each ion may differ from that created by a vertical implant.
    Type: Application
    Filed: July 10, 2013
    Publication date: January 15, 2015
    Inventors: Andrew M. Waite, Jonathan Gerald England, Rajesh Prasad
  • Patent number: 8846508
    Abstract: Methods to implant ions into the sidewall of a three dimensional high aspect ratio feature, such as a trench or via, are disclosed. The methods utilize a phenomenon known as knock-in, which causes a first species of ions, already disposed in the fill material, to become implanted in the sidewall when these ions are struck by ions of a second species being implanted into the fill material. In some embodiments, these first species and second species have similar masses to facilitate knock-in. In some embodiments, the entire hole is not completely filled with fill material. Rather, some fill material is deposited, an ion implant is performed to cause knock-in to the sidewall adjacent to the deposited fill material, and the process is repeated until the hole is filled.
    Type: Grant
    Filed: July 15, 2013
    Date of Patent: September 30, 2014
    Assignee: Varian Semiconductor Equipment Associates, Inc.
    Inventors: Jonathan Gerald England, Andrew M. Waite, Simon Ruffell
  • Publication number: 20140162435
    Abstract: Various methods for implanting dopant ions into a three dimensional feature of a semiconductor wafer are disclosed. The implant temperature may be varied to insure that the three dimensional feature, after implant, has a crystalline inner core, which is surrounded by an amorphized surface layer. The crystalline core provides a template from which the crystalline structure for the rest of the feature can be regrown. In some embodiments, the implant energy and the implant temperature may each be modified to achieve the desired crystalline inner core with the surrounding amorphized surface layer.
    Type: Application
    Filed: May 20, 2013
    Publication date: June 12, 2014
    Applicant: Varian Semiconductor Equipment Associates, Inc.
    Inventors: Andrew M. Waite, Stanislav S. Todorov
  • Patent number: 8193592
    Abstract: A method for fabricating a MOSFET (e.g., a PMOS FET) includes providing a semiconductor substrate having surface characterized by a (110) surface orientation or (110) sidewall surfaces, forming a gate structure on the surface, and forming a source extension and a drain extension in the semiconductor substrate asymmetrically positioned with respect to the gate structure. An ion implantation process is performed at a non-zero tilt angle. At least one spacer and the gate electrode mask a portion of the surface during the ion implantation process such that the source extension and drain extension are asymmetrically positioned with respect to the gate structure by an asymmetry measure.
    Type: Grant
    Filed: October 14, 2010
    Date of Patent: June 5, 2012
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Frank Bin Yang, Andrew M. Waite, Scott Luning
  • Patent number: 8148214
    Abstract: A stressed field effect transistor and methods for its fabrication are provided. The field effect transistor comprises a silicon substrate with a gate insulator overlying the silicon substrate. A gate electrode overlies the gate insulator and defines a channel region in the silicon substrate underlying the gate electrode. A first silicon germanium region having a first thickness is embedded in the silicon substrate and contacts the channel region. A second silicon germanium region having a second thickness greater than the first thickness and spaced apart from the channel region is also embedded in the silicon substrate.
    Type: Grant
    Filed: January 28, 2009
    Date of Patent: April 3, 2012
    Assignee: GlobalFoundries Inc.
    Inventors: Andrew M. Waite, Scott Luning
  • Patent number: 8124473
    Abstract: A strain enhanced semiconductor device and methods for its fabrication are provided. One method comprises embedding a strain inducing semiconductor material in the source and drain regions of the device to induce a strain in the device channel. Thin metal silicide contacts are formed to the source and drain regions so as not to relieve the induced strain. A layer of conductive material is selectively deposited in contact with the thin metal silicide contacts, and metallized contacts are formed to the conductive material.
    Type: Grant
    Filed: April 12, 2007
    Date of Patent: February 28, 2012
    Assignee: Advanced Micro Devices, Inc.
    Inventors: James N. Pan, Sey-Ping Sun, Andrew M. Waite