Patents by Inventor Andrew Malinowski

Andrew Malinowski has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11331757
    Abstract: An apparatus for laser processing a material including an optical fibre, at least one squeezing mechanism, and a lens. The optical fibre is a multimode optical fibre in which laser radiation propagates in a first optical mode and in a second optical mode. The squeezing mechanism includes at least one periodic surface defined by a pitch. The periodic surface is located adjacent to the optical fibre. The pitch couples the first and second optical modes together. The first optical mode is defined by a first mode order. The second optical mode is defined by a second mode order which is higher than the first mode order. The squeezing mechanism squeezes the periodic surface and optical fibre together with a squeezing force thereby coupling the first optical mode to the second optical mode.
    Type: Grant
    Filed: February 1, 2019
    Date of Patent: May 17, 2022
    Assignee: Trumpf Laser UK. Limited
    Inventors: Andrew Malinowski, Christophe Andre Codemard, Mikhail Nickolaos Zervas, Iain Botheroyd, Stephen John Keen, Malcolm Paul Varnham
  • Publication number: 20210362269
    Abstract: Apparatus for laser processing a material (11), which apparatus comprises a laser (1), an optical fibre (2), and a coupler (125), wherein: the laser (1) is connected to the optical fibre (2); the optical fibre (2) is such that laser radiation (13) is able to propagate along the optical fibre (2) in a first optical mode (21) having a first mode order (24), a second optical mode (22) having a second mode order (25), and a third optical mode (23) having a third mode order (26); the third mode order (26) is higher than the second mode order (25); and the second mode order (25) is higher than the first mode order (24); the apparatus being characterized in that: the coupler (125) is configured to switch laser radiation propagating in the first optical mode (21) to the laser radiation propagating in the second order mode (22); and the coupler (125) is configured to switch the laser radiation propagating in the second optical mode (22) to laser radiation propagating in the third order mode (23).
    Type: Application
    Filed: February 2, 2019
    Publication date: November 25, 2021
    Inventors: Andrew Malinowski, Christophe Andre Codemard, Mikhail Nickolaos Zervas, Iain Botheroyd, Stephen John Keen, Malcolm Paul Varnham
  • Publication number: 20210031303
    Abstract: Apparatus for laser processing a material (11), which apparatus comprises an optical fibre (2), at least one squeezing mechanism (3), and a lens (4), wherein: the optical fibre (2) is a multimode optical fibre; the optical fibre (2) is such that laser radiation (13) is able to propagate along the optical fibre (2) in a first optical mode (21) and in a second optical mode (22); the squeezing mechanism (3) comprises at least one periodic surface (6) defined by a pitch (7); and the periodic surface (6) is located adjacent to the optical fibre (2); and the apparatus is characterized in that: the pitch (7) couples the first optical mode (21) and the second optical mode C(22) together; the first optical mode (21) is defined by a first mode order (24), and the second optical mode (22) is defined by a second O mode order (25) which is higher than the first mode order (24); the squeezing mechanism (3) is configured to squeeze the periodic surface (6) and the optical fibre (2) together with a squeezing force (12), ther
    Type: Application
    Filed: February 1, 2019
    Publication date: February 4, 2021
    Inventors: Andrew Malinowski, Christophe Andre Codemard, Mikhail Nickolaos Zarvas, Iain Botheroyd, Stephen John Keen, Malcolm Paul Varnham
  • Publication number: 20190262949
    Abstract: Apparatus (10) for laser processing a material (11), which apparatus comprises a laser (1) and a beam delivery cable (2), wherein: the laser (1) is connected to the beam delivery cable (2); the beam delivery cable (2) is configured to transmit laser radiation (13) emitted from the laser (1), and the laser radiation (13) is defined by a beam parameter product (4); and the apparatus (10) is characterized in that: the apparatus (10) includes at least one squeezing mechanism (5) comprising a periodic surface (6) defined by a pitch (7); a length (8) of optical fibre (9) that forms part of the laser (1) and/or the beam delivery cable (2) is located adjacent to the periodic surface (6); and the squeezing mechanism (5) is configured to squeeze the periodic surface (6) and the length (8) of the optical fibre (9) together with a squeezing force (12); whereby the beam parameter product (4) is able to be varied by adjusting the squeezing force (12).
    Type: Application
    Filed: August 3, 2017
    Publication date: August 29, 2019
    Inventors: Andrew Malinowski, Andrè Christophe Codemard, Mikhail Nickolaos Zervas, Paul Martin Harrison, Mark Greenwood
  • Publication number: 20120128472
    Abstract: A turbomachine nozzle segment includes a vane having a first end extending to a second end through an airfoil portion. An outer member is positioned at the first end of the vane. The outer member includes a mounting element configured and disposed to secure the turbomachine nozzle segment to a turbomachine. An inner member is positioned at the second end of the vane. The inner member includes an upstream section and a downstream section. An upstream diaphragm member extends substantially radially outwardly from the inner member at the upstream section, and a downstream diaphragm member extends substantially radially outwardly from the inner member at the downstream section. Each of the upstream diaphragm member and down stream member includes an outer surface and an inner surface. One of the outer surface and inner surface of each of the upstream diaphragm member and downstream diaphragm member includes a cartridge mounting member.
    Type: Application
    Filed: November 23, 2010
    Publication date: May 24, 2012
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Anshuman Singh, Glen Arthur MacMillan, Charles Andrew Malinowski, Frederic Woodrow Roberts, JR.
  • Patent number: 7233607
    Abstract: A source of pulses of coherent radiation at a wavelength of approximately 1 ?m, comprises a pump source for producing pump light; a laser cavity comprising an Yb3+-doped gain medium arranged to receive the pump light, the laser cavity being modelocked to generate laser pulses at a defined repetition rate; a pulse detector arranged to generate a pulse selection signal indicative of the repetition rate; a pulse selector arranged to reduce the repetition rate of the laser pulses responsive to the pulse selection signal from the pulse detector by passing only selected ones of the laser pulses; and at least one optical amplifier for amplifying the laser pulses of reduced repetition rate. The at least one optical amplifier can be configured for chirped or parabolic pulse amplification.
    Type: Grant
    Filed: May 3, 2005
    Date of Patent: June 19, 2007
    Assignee: University of Southampton
    Inventors: David J Richardson, Lars Johan Albinsson Nilsson, Laurent Lefort, Jonathan Hugh Vaughan Price, Andrew Malinowski, Morten Ibsen
  • Publication number: 20050190802
    Abstract: A source of pulses of coherent radiation at a wavelength of approximately 1 ?m, comprises a pump source for producing pump light; a laser cavity comprising an Yb3+-doped gain medium arranged to receive the pump light, the laser cavity being modelocked to generate laser pulses at a defined repetition rate; a pulse detector arranged to generate a pulse selection signal indicative of the repetition rate; a pulse selector arranged to reduce the repetition rate of the laser pulses responsive to the pulse selection signal from the pulse detector by passing only selected ones of the laser pulses; and at least one optical amplifier for amplifying the laser pulses of reduced repetition rate. The at least one optical amplifier can be configured for chirped or parabolic pulse amplification.
    Type: Application
    Filed: May 3, 2005
    Publication date: September 1, 2005
    Inventors: David Richardson, Lars Nilsson, Laurent Lefort, Jonathan Price, Andrew Malinowski, Morten Ibsen
  • Patent number: 6917631
    Abstract: A source of pulses of coherent radiation at a wavelength of approximately 1 ?m, comprises a pump source for producing pump light, a laser cavity comprising an Yb3+-doped gain medium arranged to receive the pump light, the laser cavity being modelocked to generate laser pulses at a defined repetition rate; a pulse detector arranged to generate a pulse selection signal indicative of the repetition rate; a pulse selector arranged to reduce the repetition rate of the laser pulses responsive to the pulse selection signal from the pulse detector by passing only selected ones of the laser pulses; and at least one optical amplifier for amplifying the laser pulses of reduced repetition rate. The at least one optical amplifier can be configured for chirped or parabolic pulse amplification.
    Type: Grant
    Filed: May 13, 2002
    Date of Patent: July 12, 2005
    Assignee: University of Southampton
    Inventors: David J Richardson, Lars Johan Albinsson Nilsson, Laurent Lefort, Jonathan Hugh Vaughan Price, Andrew Malinowski, Morten Ibsen
  • Patent number: 6887041
    Abstract: The third stage nozzle has an airfoil profile substantially in accordance with Cartesian coordinate values of X, Y and Z set forth in Table I wherein X and Y values are in inches and define airfoil profile sections at each distance Z and Z is a non-dimensional value from 0 to 1 convertible to Z distances in inches by multiplying the Z values of Table I by a height of the airfoil in inches. The profile sections at the Z distances are joined smoothly with one another to form a complete airfoil shape. The X and Y distances may be scalable to provide a scaled-up or scaled-down airfoil for the nozzle. The nominal airfoil given by the X, Y and Z distances lies within an envelope of ±0.100 inches.
    Type: Grant
    Filed: March 3, 2003
    Date of Patent: May 3, 2005
    Assignee: General Electric Company
    Inventors: Robert Wayne Coke, James Bernard Fehlberg, Charles Andrew Malinowski
  • Publication number: 20040175271
    Abstract: The third stage nozzle has an airfoil profile substantially in accordance with Cartesian coordinate values of X, Y and Z set forth in Table I wherein X and Y values are in inches and define airfoil profile sections at each distance Z and Z is a non-dimensional value from 0 to 1 convertible to Z distances in inches by multiplying the Z values of Table I by a height of the airfoil in inches. The profile sections at the Z distances are joined smoothly with one another to form a complete airfoil shape. The X and Y distances may be scalable to provide a scaled-up or scaled-down airfoil for the nozzle. The nominal airfoil given by the X, Y and Z distances lies within an envelope of ±0.100 inches.
    Type: Application
    Filed: March 3, 2003
    Publication date: September 9, 2004
    Inventors: Robert Wayne Coke, James Bernard Fehlberg, Charles Andrew Malinowski
  • Publication number: 20030156605
    Abstract: A source of pulses of coherent radiation at a wavelength of approximately 1 &mgr;m, comprises a pump source for producing pump light; a laser cavity comprising an Yb3+-doped gain medium arranged to receive the pump light, the laser cavity being modelocked to generate laser pulses at a defined repetition rate; a pulse detector arranged to generate a pulse selection signal indicative of the repetition rate; a pulse selector arranged to reduce the repetition rate of the laser pulses responsive to the pulse selection signal from the pulse detector by passing only selected ones of the laser pulses; and at least one optical amplifier for amplifying the laser pulses of reduced repetition rate. The at least one optical amplifier can be configured for chirped or parabolic pulse amplification.
    Type: Application
    Filed: May 13, 2002
    Publication date: August 21, 2003
    Inventors: David J. Richardson, Lars Johan Albinsson Nilsson, Laurent Lefort, Jonathan Hugh Vaughan Price, Andrew Malinowski, Morten Ibsen