Patents by Inventor Andrew Michael Robb

Andrew Michael Robb has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10620179
    Abstract: Incendivity test systems and methods are disclosed. Incendivity test systems include a non-flammable gas mixture and a test article. The non-flammable gas mixture includes a thermally reactive reagent that is formulated to thermally react to produce a reaction product. Incendivity test systems also include an energy source configured to apply an energy discharge such as a simulated lightning strike to the test article. Incendivity test systems also include a detection device configured to measure an indicator species in the non-flammable gas mixture (e.g., the thermally reactive reagent and/or the reaction product). Incendivity test methods include contacting the test article with the non-flammable gas mixture, applying the energy discharge to the test article, and then measuring the amount of the indicator species and determining the incendivity of the test article in response to the energy discharge based upon the amount of the indicator species.
    Type: Grant
    Filed: November 5, 2018
    Date of Patent: April 14, 2020
    Assignee: The Boeing Company
    Inventors: Jason Scott Damazo, Eddie Kwon, Andrew Michael Robb
  • Patent number: 10362115
    Abstract: A method for generating sensor data is presented. A number of wireless power signals is sent to a group of sensor units. A number of wireless data collection signals is sent to the group of sensor units after the number of wireless power signals have been sent to the group of sensor units. Sensor data in a number of wireless response signals is received from the group of sensor units.
    Type: Grant
    Filed: March 21, 2016
    Date of Patent: July 23, 2019
    Assignee: The Boeing Company
    Inventors: Jason P. Bommer, David William Minteer, Richard J. Nesting, Arun Ayyagari, Richard Neal Bostwick, Andrew Michael Robb
  • Publication number: 20190072535
    Abstract: Incendivity test systems and methods are disclosed. Incendivity test systems include a non-flammable gas mixture and a test article. The non-flammable gas mixture includes a thermally reactive reagent that is formulated to thermally react to produce a reaction product. Incendivity test systems also include an energy source configured to apply an energy discharge such as a simulated lightning strike to the test article. Incendivity test systems also include a detection device configured to measure an indicator species in the non-flammable gas mixture (e.g., the thermally reactive reagent and/or the reaction product). Incendivity test methods include contacting the test article with the non-flammable gas mixture, applying the energy discharge to the test article, and then measuring the amount of the indicator species and determining the incendivity of the test article in response to the energy discharge based upon the amount of the indicator species.
    Type: Application
    Filed: November 5, 2018
    Publication date: March 7, 2019
    Inventors: Jason Scott Damazo, Eddie Kwon, Andrew Michael Robb
  • Patent number: 10145834
    Abstract: Incendivity test systems and methods are disclosed. Incendivity test systems include a non-flammable gas mixture and a test article in a test chamber. The non-flammable gas mixture includes a thermally reactive reagent that is formulated to thermally react to produce a reaction product. Incendivity test systems also include an energy source configured to apply an energy discharge such as a simulated lightning strike to the test article. Incendivity test systems also include a detection device configured to measure an indicator species in the non-flammable gas mixture (e.g., the thermally reactive reagent and/or the reaction product). Incendivity test methods include contacting the test article with the non-flammable gas mixture, applying the energy discharge to the test article, and then measuring the amount of the indicator species and determining the incendivity of the test article in response to the energy discharge based upon the amount of the indicator species.
    Type: Grant
    Filed: July 19, 2016
    Date of Patent: December 4, 2018
    Assignee: The Boeing Company
    Inventors: Jason Scott Damazo, Eddie Kwon, Andrew Michael Robb
  • Publication number: 20180024105
    Abstract: Incendivity test systems and methods are disclosed. Incendivity test systems include a non-flammable gas mixture and a test article in a test chamber. The non-flammable gas mixture includes a thermally reactive reagent that is formulated to thermally react to produce a reaction product. Incendivity test systems also include an energy source configured to apply an energy discharge such as a simulated lightning strike to the test article. Incendivity test systems also include a detection device configured to measure an indicator species in the non-flammable gas mixture (e.g., the thermally reactive reagent and/or the reaction product). Incendivity test methods include contacting the test article with the non-flammable gas mixture, applying the energy discharge to the test article, and then measuring the amount of the indicator species and determining the incendivity of the test article in response to the energy discharge based upon the amount of the indicator species.
    Type: Application
    Filed: July 19, 2016
    Publication date: January 25, 2018
    Inventors: Jason Scott Damazo, Eddie Kwon, Andrew Michael Robb
  • Publication number: 20160205193
    Abstract: A method for generating sensor data is presented. A number of wireless power signals is sent to a group of sensor units. A number of wireless data collection signals is sent to the group of sensor units after the number of wireless power signals have been sent to the group of sensor units. Sensor data in a number of wireless response signals is received from the group of sensor units.
    Type: Application
    Filed: March 21, 2016
    Publication date: July 14, 2016
    Inventors: Jason P. Bommer, David William Minteer, Richard J. Nesting, Arun Ayyagari, Richard Neal Bostwick, Andrew Michael Robb
  • Patent number: 9293033
    Abstract: A method for generating sensor data is presented. A number of wireless power signals is sent to a group of sensor units. A number of wireless data collection signals is sent to the group of sensor units after the number of wireless power signals have been sent to the group of sensor units. Sensor data in a number of wireless response signals is received from the group of sensor units.
    Type: Grant
    Filed: July 16, 2013
    Date of Patent: March 22, 2016
    Assignee: THE BOEING COMPANY
    Inventors: Jason P. Bommer, David William Minteer, Richard J. Nesting, Arun Ayyagari, Richard Neal Bostwick, Andrew Michael Robb
  • Publication number: 20150022373
    Abstract: A method for generating sensor data is presented. A number of wireless power signals is sent to a group of sensor units. A number of wireless data collection signals is sent to the group of sensor units after the number of wireless power signals have been sent to the group of sensor units. Sensor data in a number of wireless response signals is received from the group of sensor units.
    Type: Application
    Filed: July 16, 2013
    Publication date: January 22, 2015
    Inventors: Jason P. Bommer, David William Minteer, Richard J. Nesting, Arun Ayyagari, Richard Neal Bostwick, Andrew Michael Robb