Patents by Inventor Andrew Miller Wilder

Andrew Miller Wilder has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11833353
    Abstract: Various embodiments of an interface control subsystem may be used between an electrode terminal and a recording terminal of a neurostimulation and neurorecording system. The interface control subsystem may operate in three modes. In a disable mode, a first transistor and a second transistor disposed between the electrode terminal and the recording terminal may operate in a cutoff region and generate a high impedance. In an active mode, the first transistor and the second transistor may operate in a saturation region and generate a low impedance. In a stimulation mode, the first transistor and the second transistor operate in a triode region and generate an impedance between the high impedance of the disable mode and the low impedance of the active mode. The interface control subsystem may further limit voltage at the recording terminal in response to a detected overvoltage condition.
    Type: Grant
    Filed: May 7, 2021
    Date of Patent: December 5, 2023
    Assignee: Veritas IP, LLC
    Inventors: Andrew Miller Wilder, Scott Darold Hiatt, Steven John Barrus, Cliff C. Nixon
  • Patent number: 11642232
    Abstract: Disclosed herein are systems and methods for sensor systems. In one embodiment, a system may include an implantable component and an external component. The implantable component may comprise a housing and an electrode array configured to receive a plurality of biopotential signals. The housing may comprise a wireless power receiver and a wireless data transmitter to transmit representations of the biopotential signals. The external component may comprise a wireless data receiver configured to receive the plurality of digital representations of the biopotential signals and a wireless power transmitter configured to provide power to the internal component. A shielding component may separate the wireless power transmitter from the wireless data receiver. An interface may be configured to communicate with a prosthesis and configured to cause the prosthesis to implement a voluntary motion based on the plurality of digital presentations of the biopotential signals.
    Type: Grant
    Filed: May 7, 2020
    Date of Patent: May 9, 2023
    Assignee: Ripple LLC
    Inventors: Daniel Allen McDonnall, Scott Darold Hiatt, Brian Scott Crofts, Christopher Farand Smith, Andrew Miller Wilder
  • Publication number: 20220224030
    Abstract: Disclosed herein are systems and methods for coupling electrodes to electrical components that may be utilized in a variety of applications to collect data from the electrodes. In one embodiment, an electrode connection system to couple an electrode to an electrical component. The electrode connection system includes the electrical connector body comprising a PCB assembly cavity and an electrode channel. An electrode clamp coupled to the electrical connector body may include an engaging mechanism and at least one electrode clamp pad protrusion to couple an at least one electrode pad to an at least one connector pad. The PCB assembly may include at least one connector pad. The electrode may comprise at least one electrically active electrode pad. The electrical component may collect data from the electrode or stimulate tissue utilizing the electrode.
    Type: Application
    Filed: March 30, 2022
    Publication date: July 14, 2022
    Inventors: JOSE ORTEGA, ALEXANDER THIESSEN, SCOTT DAROLD HIATT, ANDREW MILLER WILDER
  • Publication number: 20210346700
    Abstract: Disclosed herein are various embodiments of an interface control subsystem that may be used between an electrode terminal and a recording terminal of a neurostimulation and neurorecording system. The interface control subsystem may operate in three modes. In a disable mode, a first transistor and a second transistor disposed between the electrode terminal and the recording terminal may operate in a cutoff region and generate a high impedance. In an active mode, the first transistor and the second transistor may operate in a saturation region and generate a low impedance. In a stimulation mode, the first transistor and the second transistor operate in a triode region and generate an impedance between the high impedance of the disable mode and the low impedance of the active mode. The interface control subsystem may further limit voltage at the recording terminal in response to a detected overvoltage condition.
    Type: Application
    Filed: May 7, 2021
    Publication date: November 11, 2021
    Inventors: Andrew Miller Wilder, Scott Darold Hiatt, Steven John Barrus, Cliff C. Nixon
  • Publication number: 20200276031
    Abstract: Disclosed herein are systems and methods for sensor systems. In one embodiment, a system may include an implantable component and an external component. The implantable component may comprise a housing and an electrode array configured to receive a plurality of biopotential signals. The housing may comprise a wireless power receiver and a wireless data transmitter to transmit representations of the biopotential signals. The external component may comprise a wireless data receiver configured to receive the plurality of digital representations of the biopotential signals and a wireless power transmitter configured to provide power to the internal component. A shielding component may separate the wireless power transmitter from the wireless data receiver. An interface may be configured to communicate with a prosthesis and configured to cause the prosthesis to implement a voluntary motion based on the plurality of digital presentations of the biopotential signals.
    Type: Application
    Filed: May 7, 2020
    Publication date: September 3, 2020
    Inventors: Daniel Allen McDonnall, Scott Darold Hiatt, Brian Scott Crofts, Christopher Farand Smith, Andrew Miller Wilder
  • Patent number: 10729564
    Abstract: Disclosed herein are systems and methods for sensor systems. In one embodiment, a system may include an implantable component and an external component. The implantable component may comprise a housing and an electrode array configured to receive a plurality of biopotential signals. The housing may comprise a wireless power receiver and a wireless data transmitter to transmit representations of the biopotential signals. The external component may comprise a wireless data receiver configured to receive the plurality of digital representations of the biopotential signals and a wireless power transmitter configured to provide power to the internal component. A shielding component may separate the wireless power transmitter from the wireless data receiver. An interface may be configured to communicate with a prosthesis and configured to cause the prosthesis to implement a voluntary motion based on the plurality of digital presentations of the biopotential signals.
    Type: Grant
    Filed: January 12, 2018
    Date of Patent: August 4, 2020
    Assignee: Ripple LLC
    Inventors: Daniel Allen McDonnall, Scott Darold Hiatt, Brian Scott Crofts, Christopher Farand Smith, Andrew Miller Wilder
  • Publication number: 20190216619
    Abstract: Disclosed herein are systems and methods for sensor systems. In one embodiment, a system may include an implantable component and an external component. The implantable component may comprise a housing and an electrode array configured to receive a plurality of biopotential signals. The housing may comprise a wireless power receiver and a wireless data transmitter to transmit representations of the biopotential signals. The external component may comprise a wireless data receiver configured to receive the plurality of digital representations of the biopotential signals and a wireless power transmitter configured to provide power to the internal component. A shielding component may separate the wireless power transmitter from the wireless data receiver. An interface may be configured to communicate with a prosthesis and configured to cause the prosthesis to implement a voluntary motion based on the plurality of digital presentations of the biopotential signals.
    Type: Application
    Filed: January 12, 2018
    Publication date: July 18, 2019
    Applicant: Ripple, LLC
    Inventors: Daniel Allen McDonnall, Scott Darold Hiatt, Brian Scott Crofts, Christopher Farand Smith, Andrew Miller Wilder