Patents by Inventor Andrew Neureuther

Andrew Neureuther has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20070053576
    Abstract: The present invention presents three new classes of phase-shifting mask patterns. In optical image forming systems, a mask with phase shifted regions can act as a precision instrument for characterizing imaging. Three new classes of phase-shifting mask patterns have been invented to characterize projection printing tool illumination and phase-shifting mask (PSM) performance. The linear phase grating (LPG) and linear phase ring (LPR) both serve to characterize illumination angular distribution and uniformity. A third new class, the interferometric-probe monitor for phase-shifting masks (IPM-PSM), measures the effective phase, transmittance and edge effects of various phase-shifted mask features. All three patterns allow performance comparison across the field, tool-to-tool, over time, or to intended design.
    Type: Application
    Filed: February 7, 2005
    Publication date: March 8, 2007
    Applicant: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
    Inventors: Andrew Neureuther, Gregory McIntyre
  • Publication number: 20060187451
    Abstract: A method to monitor the state of polarization incident on the photomask in projection printing is presented. The method includes a series of phase-shifting mask patterns that take advantage of high NA effects to create a signal dependent on only one incident polarization component. The patterns exist in two embodiments: a Radial Phase Grating (RPG) and Proximity Effect Polarization Analyzers (PEPA). The PEPAs are derived from basic principles and are theoretically the most sensitive patterns to polarization. A polarimeter is then constructed of six patterns of either embodiment that, when properly calibrated, is sufficient to measure the Stokes parameters of the incident illumination. A test reticle design is proposed, consisting of multiple polarimeters with an array of pinholes on the backside of the photomask. This technique is able to monitor any arbitrary illumination scheme for a particular tool. Calibration of the test mask is required.
    Type: Application
    Filed: February 16, 2006
    Publication date: August 24, 2006
    Inventors: Gregory McIntyre, Andrew Neureuther
  • Patent number: 5326659
    Abstract: A method for making a mask for optical lithography or other projection printing, wherein the mask is represented by a mask pattern, is disclosed herein. The mask provides a substantially binary output image on the surface of a wafer as light is applied to the mask. Light passes through the mask and onto a wafer at varying intensities, such intensities represented by output intensity values, the threshold values of which produce output images within predetermined constraints. The method includes the steps of defining sampling points which are representative of the binary output image. These sampling points are used in defining local objective functions, which are combined to give a total objective function. The present invention further includes the steps of adjusting the mask pattern to provide for minimization by optimization of the objective function, transferring the mask pattern to a mask generating machine to generate a mask, and generating a mask.
    Type: Grant
    Filed: March 5, 1992
    Date of Patent: July 5, 1994
    Assignee: Regents of the University of California
    Inventors: Yong Liu, Avideh Zakhor, Andrew Neureuther