Patents by Inventor Andrew P. Wallace

Andrew P. Wallace has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240108512
    Abstract: Methods and apparatuses for cleaning and/or drying a subject's ears and/or nose may include an inverting tubular swab region. These apparatuses may remove debris, such as ear wax & skin debris from the ear canal. These apparatuses are safer than traditional cotton swab. Also described herein are apparatuses configured for use in the nose, which may remove mucus (e.g., snot) from the nasal and sinus regions. These apparatuses may be configured for use with infants and toddlers as an alternative to air aspiration bulb/tool. Also described herein are methods of using any of these apparatuses as well as methods of making and packaging them.
    Type: Application
    Filed: October 3, 2023
    Publication date: April 4, 2024
    Inventors: Michael P. WALLACE, Michael A. DOTSEY, Andrew MILLER
  • Patent number: 9845239
    Abstract: Systems, devices, and methods combine thermally stable reactant materials and aqueous solutions to generate hydrogen and a non-toxic liquid by-product. The reactant materials can sodium silicide or sodium silica gel. The hydrogen generation devices are used in fuels cells and other industrial applications. One system combines cooling, pumping, water storage, and other devices to sense and control reactions between reactant materials and aqueous solutions to generate hydrogen. Springs and other pressurization mechanisms pressurize and deliver an aqueous solution to the reaction. A check valve and other pressure regulation mechanisms regulate the pressure of the aqueous solution delivered to the reactant fuel material in the reactor based upon characteristics of the pressurization mechanisms and can regulate the pressure of the delivered aqueous solution as a steady decay associated with the pressurization force.
    Type: Grant
    Filed: July 1, 2015
    Date of Patent: December 19, 2017
    Assignee: Intelligent Energy Limited
    Inventors: Andrew P. Wallace, John M. Melack, Michael Lefenfeld
  • Patent number: 9669371
    Abstract: Systems, devices, and methods combine reactant materials and aqueous solutions to generate hydrogen. The reactant materials can sodium silicide or sodium silica gel. The hydrogen generation devices are used in fuels cells and other industrial applications. One system combines cooling, pumping, water storage, and other devices to sense and control reactions between reactant materials and aqueous solutions to generate hydrogen. Multiple inlets of varied placement geometries deliver aqueous solution to the reaction. The reactant materials and aqueous solution are churned to control the state of the reaction. The aqueous solution can be recycled and returned to the reaction. One system operates over a range of temperatures and pressures and includes a hydrogen separator, a heat removal mechanism, and state of reaction control devices. The systems, devices, and methods of generating hydrogen provide thermally stable solids, near-instant reaction with the aqueous solutions, and a non-toxic liquid by-product.
    Type: Grant
    Filed: June 8, 2015
    Date of Patent: June 6, 2017
    Assignee: Intelligent Energy Limited
    Inventors: Andrew P. Wallace, John M. Melack, Michael Lefenfeld
  • Publication number: 20160002031
    Abstract: Systems, devices, and methods combine thermally stable reactant materials and aqueous solutions to generate hydrogen and a non-toxic liquid by-product. The reactant materials can sodium silicide or sodium silica gel. The hydrogen generation devices are used in fuels cells and other industrial applications. One system combines cooling, pumping, water storage, and other devices to sense and control reactions between reactant materials and aqueous solutions to generate hydrogen. Springs and other pressurization mechanisms pressurize and deliver an aqueous solution to the reaction. A check valve and other pressure regulation mechanisms regulate the pressure of the aqueous solution delivered to the reactant fuel material in the reactor based upon characteristics of the pressurization mechanisms and can regulate the pressure of the delivered aqueous solution as a steady decay associated with the pressurization force.
    Type: Application
    Filed: July 1, 2015
    Publication date: January 7, 2016
    Applicant: Intelligent Energy Limited
    Inventors: Andrew P. Wallace, John M. Melack, Michael Lefenfeld
  • Publication number: 20150376002
    Abstract: A water reactive hydrogen generation system includes devices and methods to combine reactant fuel materials and aqueous solutions to generate hydrogen. The generated hydrogen is used in a fuel cell or other application. The water reactive hydrogen generation system includes a reactant fuel chamber, a reactor chamber (zone), a water solution inlet, a hydrogen output port, and a material delivery device. The material delivery device can include a drive screw and a sliding piston to move the fuel material into the reactor zone when a reaction is initiated. As the reaction takes place, the reaction waste product is removed from the reaction zone to allow additional reactant fuel materials and aqueous solutions to be introduced and to continue the hydrogen-generating reaction. A reaction waste product created is exchanged for additional reactant fuel material at determined intervals to allow the reaction to continue until the reactant fuel is exhausted.
    Type: Application
    Filed: September 3, 2015
    Publication date: December 31, 2015
    Applicant: Intelligent Energy Limited
    Inventors: Andrew P. WALLACE, John M. Melack, Michael B. Lefenfeld
  • Publication number: 20150329357
    Abstract: Systems, devices, and methods combine reactant materials and aqueous solutions to generate hydrogen. The reactant materials can sodium silicide or sodium silica gel. The hydrogen generation devices are used in fuels cells and other industrial applications. One system combines cooling, pumping, water storage, and other devices to sense and control reactions between reactant materials and aqueous solutions to generate hydrogen. Multiple inlets of varied placement geometries deliver aqueous solution to the reaction. The reactant materials and aqueous solution are churned to control the state of the reaction. The aqueous solution can be recycled and returned to the reaction. One system operates over a range of temperatures and pressures and includes a hydrogen separator, a heat removal mechanism, and state of reaction control devices. The systems, devices, and methods of generating hydrogen provide thermally stable solids, near-instant reaction with the aqueous solutions, and a non-toxic liquid by-product.
    Type: Application
    Filed: June 8, 2015
    Publication date: November 19, 2015
    Applicant: Intelligent Energy Limited
    Inventors: Andrew P. Wallace, John M. Melack, Michael Lefenfeld
  • Patent number: 9156687
    Abstract: A water reactive hydrogen generation system includes devices and methods to combine reactant fuel materials and aqueous solutions to generate hydrogen. The generated hydrogen is used in a fuel cell or other application. The water reactive hydrogen generation system includes a reactant fuel chamber, a reactor chamber (zone), a water solution inlet, a hydrogen output port, and a material delivery device. The material delivery device can include a drive screw and a sliding piston to move the fuel material into the reactor zone when a reaction is initiated. As the reaction takes place, the reaction waste product is removed from the reaction zone to allow additional reactant fuel materials and aqueous solutions to be introduced and to continue the hydrogen-generating reaction. A reaction waste product created is exchanged for additional reactant fuel material at determined intervals to allow the reaction to continue until the reactant fuel is exhausted.
    Type: Grant
    Filed: May 7, 2012
    Date of Patent: October 13, 2015
    Assignee: Intelligent Energy Limited
    Inventors: Andrew P. Wallace, John M. Melack, Michael Lefenfeld
  • Patent number: 9102528
    Abstract: Systems, devices, and methods combine thermally stable reactant materials and aqueous solutions to generate hydrogen and a non-toxic liquid by-product. The reactant materials can sodium silicide or sodium silica gel. The hydrogen generation devices are used in fuels cells and other industrial applications. One system combines cooling, pumping, water storage, and other devices to sense and control reactions between reactant materials and aqueous solutions to generate hydrogen. Springs and other pressurization mechanisms pressurize and deliver an aqueous solution to the reaction. A check valve and other pressure regulation mechanisms regulate the pressure of the aqueous solution delivered to the reactant fuel material in the reactor based upon characteristics of the pressurization mechanisms and can regulate the pressure of the delivered aqueous solution as a steady decay associated with the pressurization force.
    Type: Grant
    Filed: February 7, 2013
    Date of Patent: August 11, 2015
    Assignee: Intelligent Energy Limited
    Inventors: Andrew P. Wallace, John M. Melack, Michael Lefenfeld
  • Patent number: 9079146
    Abstract: Systems, devices, and methods combine reactant materials and aqueous solutions to generate hydrogen. The reactant materials can sodium silicide or sodium silica gel. The hydrogen generation devices are used in fuels cells and other industrial applications. One system combines cooling, pumping, water storage, and other devices to sense and control reactions between reactant materials and aqueous solutions to generate hydrogen. Multiple inlets of varied placement geometries deliver aqueous solution to the reaction. The reactant materials and aqueous solution are churned to control the state of the reaction. The aqueous solution can be recycled and returned to the reaction. One system operates over a range of temperatures and pressures and includes a hydrogen separator, a heat removal mechanism, and state of reaction control devices. The systems, devices, and methods of generating hydrogen provide thermally stable solids, near-instant reaction with the aqueous solutions, and a non-toxic liquid by-product.
    Type: Grant
    Filed: March 30, 2010
    Date of Patent: July 14, 2015
    Assignee: Intelligent Energy Limited
    Inventors: Andrew P. Wallace, John M. Melack, Michael Lefenfeld
  • Publication number: 20150061600
    Abstract: A hydrogen fuel cell system includes devices and methods to combine reactant fuel materials and aqueous solutions to generate hydrogen. The fuel cell system includes a fuel cell, a fuel cartridge, and a supply of pressurized aqueous solution to generate power for portable power electronics. The fuel cartridge includes a top cap with an overmolded face seal gasket that provides an offset injection point on the fuel cartridge. The aqueous solution is delivered into the fuel cartridge to generate hydrogen for the fuel cell which then produces power for the user of the electronics.
    Type: Application
    Filed: October 20, 2014
    Publication date: March 5, 2015
    Inventors: Andrew P. Wallace, John M. Melack, Michael Lefenfeld
  • Patent number: 8895204
    Abstract: A water reactive hydrogen fueled power system includes devices and methods to combine reactant fuel materials and aqueous solutions to generate hydrogen. The generated hydrogen is converted in a fuel cell to provide electricity. The water reactive hydrogen fueled power system includes a fuel cell, a water feed tray, and a fuel cartridge to generate power for portable power electronics. The removable fuel cartridge is encompassed by the water feed tray and fuel cell. The water feed tray is refillable with water by a user. The water is then transferred from the water feed tray into the fuel cartridge to generate hydrogen for the fuel cell which then produces power for the user.
    Type: Grant
    Filed: February 7, 2013
    Date of Patent: November 25, 2014
    Assignee: Intelligent Energy Limited
    Inventors: Andrew P. Wallace, John M. Melack, Michael Lefenfeld
  • Patent number: 8632928
    Abstract: A water reactive hydrogen fueled power system includes devices and methods to combine reactant fuel materials and aqueous solutions to generate hydrogen. The generated hydrogen is converted in a fuel cell to provide electricity. The water reactive hydrogen fueled power system includes a fuel cell, a water feed tray, and a fuel cartridge to generate power for portable power electronics. The removable fuel cartridge is encompassed by the water feed tray and fuel cell. The water feed tray is refillable with water by a user. The water is then transferred from the water feed tray into the fuel cartridge to generate hydrogen for the fuel cell which then produces power for the user.
    Type: Grant
    Filed: November 8, 2011
    Date of Patent: January 21, 2014
    Assignee: Signa Chemistry, Inc.
    Inventors: Andrew P. Wallace, John M. Melack, Michael Lefenfeld
  • Publication number: 20130251626
    Abstract: Systems, devices, and methods combine thermally stable reactant materials and aqueous solutions to generate hydrogen and a non-toxic liquid by-product. The reactant materials can sodium silicide or sodium silica gel. The hydrogen generation devices are used in fuels cells and other industrial applications. One system combines cooling, pumping, water storage, and other devices to sense and control reactions between reactant materials and aqueous solutions to generate hydrogen. Springs and other pressurization mechanisms pressurize and deliver an aqueous solution to the reaction. A check valve and other pressure regulation mechanisms regulate the pressure of the aqueous solution delivered to the reactant fuel material in the reactor based upon characteristics of the pressurization mechanisms and can regulate the pressure of the delivered aqueous solution as a steady decay associated with the pressurization force.
    Type: Application
    Filed: February 7, 2013
    Publication date: September 26, 2013
    Applicant: SIGNA CHEMISTRY, INC.
    Inventors: Andrew P. WALLACE, John M. MELACK, Michael LEFENFELD
  • Publication number: 20130230784
    Abstract: A water reactive hydrogen fueled power system includes devices and methods to combine reactant fuel materials and aqueous solutions to generate hydrogen. The generated hydrogen is converted in a fuel cell to provide electricity. The water reactive hydrogen fueled power system includes a fuel cell, a water feed tray, and a fuel cartridge to generate power for portable power electronics. The removable fuel cartridge is encompassed by the water feed tray and fuel cell. The water feed tray is refillable with water by a user. The water is then transferred from the water feed tray into the fuel cartridge to generate hydrogen for the fuel cell which then produces power for the user.
    Type: Application
    Filed: February 7, 2013
    Publication date: September 5, 2013
    Applicant: SIGNA CHEMISTRY, INC.
    Inventors: Andrew P. WALLACE, John M. MELACK, Michael LEFENFELD
  • Publication number: 20120282166
    Abstract: A water reactive hydrogen generation system includes devices and methods to combine reactant fuel materials and aqueous solutions to generate hydrogen. The generated hydrogen is used in a fuel cell or other application. The water reactive hydrogen generation system includes a reactant fuel chamber, a reactor chamber (zone), a water solution inlet, a hydrogen output port, and a material delivery device. The material delivery device can include a drive screw and a sliding piston to move the fuel material into the reactor zone when a reaction is initiated. As the reaction takes place, the reaction waste product is removed from the reaction zone to allow additional reactant fuel materials and aqueous solutions to be introduced and to continue the hydrogen-generating reaction. A reaction waste product created is exchanged for additional reactant fuel material at determined intervals to allow the reaction to continue until the reactant fuel is exhausted.
    Type: Application
    Filed: May 7, 2012
    Publication date: November 8, 2012
    Inventors: Andrew P. WALLACE, John M. MELACK, Michael LEFENFELD
  • Publication number: 20120115054
    Abstract: A water reactive hydrogen fueled power system includes devices and methods to combine reactant fuel materials and aqueous solutions to generate hydrogen. The generated hydrogen is converted in a fuel cell to provide electricity. The water reactive hydrogen fueled power system includes a fuel cell, a water feed tray, and a fuel cartridge to generate power for portable power electronics. The removable fuel cartridge is encompassed by the water feed tray and fuel cell. The water feed tray is refillable with water by a user. The water is then transferred from the water feed tray into the fuel cartridge to generate hydrogen for the fuel cell which then produces power for the user.
    Type: Application
    Filed: November 8, 2011
    Publication date: May 10, 2012
    Inventors: Andrew P. WALLACE, John M. MELACK, Michael LEFENFELD
  • Publication number: 20100247426
    Abstract: Systems, devices, and methods combine reactant materials and aqueous solutions to generate hydrogen. The reactant materials can sodium silicide or sodium silica gel. The hydrogen generation devices are used in fuels cells and other industrial applications. One system combines cooling, pumping, water storage, and other devices to sense and control reactions between reactant materials and aqueous solutions to generate hydrogen. Multiple inlets of varied placement geometries deliver aqueous solution to the reaction. The reactant materials and aqueous solution are churned to control the state of the reaction. The aqueous solution can be recycled and returned to the reaction. One system operates over a range of temperatures and pressures and includes a hydrogen separator, a heat removal mechanism, and state of reaction control devices. The systems, devices, and methods of generating hydrogen provide thermally stable solids, near-instant reaction with the aqueous solutions, and a non-toxic liquid by-product.
    Type: Application
    Filed: March 30, 2010
    Publication date: September 30, 2010
    Applicant: SiGNa Chemistry, Inc.
    Inventors: Andrew P. Wallace, John M. Melack, Michael Lefenfeld
  • Patent number: 7448013
    Abstract: There is disclosed a system for designing circuits which involves pre-placing delay elements between circuit components susceptible to shoot-through due to effects of clock skew, each delay element having a physical form and at least one input terminal and at least one output terminal; determining which delay elements are not critical in preventing shoot-through; removing non-critical delay elements from the circuit; and replacing each removed delay element with a cell having a physical form equivalent to the physical form of the removed delay element and a wire connection between an input and an output of the cell equivalent to an input and output of the delay element. This wire cell has the effect of removing the delay element from the circuit without having to reposition the circuit components. This has the result that it is not necessary to re-position circuit components on the removal of delay elements and then to re-evaluate the circuit performance. Circuit design can be significantly improved.
    Type: Grant
    Filed: December 29, 2004
    Date of Patent: November 4, 2008
    Assignee: Broadcom Corporation
    Inventor: Andrew P. Wallace
  • Patent number: 6839886
    Abstract: There is disclosed a system for designing circuits which involves pre-placing delay elements between circuit components susceptible to shoot-through due to effects of clock skew, each delay element having a physical form and at least one input terminal and at least one output terminal; determining which delay elements are not critical in preventing shoot-through; removing non-critical delay elements from the circuit; and replacing each removed delay element with a cell having a physical form equivalent to the physical form of the removed delay element and a wire connection between an input and an output of the cell equivalent to an input and output of the delay element. This wire cell has the effect of removing the delay element from the circuit without having to reposition the circuit components. This has the result that it is not necessary to re-position circuit components on the removal of delay elements and then to re-evaluate the circuit performance. Circuit design can be significantly improved.
    Type: Grant
    Filed: September 23, 2002
    Date of Patent: January 4, 2005
    Assignee: Broadcom Corporation
    Inventor: Andrew P. Wallace
  • Publication number: 20030061586
    Abstract: There is disclosed a system for designing circuits which involves pre-placing delay elements between circuit components susceptible to shoot-through due to effects of clock skew, each delay element having a physical form and at least one input terminal and at least one output terminal; determining which delay elements are not critical in preventing shoot-through; removing non-critical delay elements from the circuit; and replacing each removed delay element with a cell having a physical form equivalent to the physical form of the removed delay element and a wire connection between an input and an output of the cell equivalent to an input and output of the delay element. This wire cell has the effect of removing the delay element from the circuit without having to reposition the circuit components. This has the result that it is not necessary to re-position circuit components on the removal of delay elements and then to re-evaluate the circuit performance. Circuit design can be significantly improved.
    Type: Application
    Filed: September 23, 2002
    Publication date: March 27, 2003
    Applicant: Broadcom Corporation
    Inventor: Andrew P. Wallace