Patents by Inventor Andrew Radtke

Andrew Radtke has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11947909
    Abstract: In non-limiting examples of the present disclosure, systems, methods and devices for determining a language of a text string are presented. A language detection model may be maintained. The language detection model may comprise identities and weights for initial and final consonants, identities and weights for prefixes and suffixes, and identities and weights for vowel sequences, where each identity is derived from a training corpus. The weights may correspond to a frequency of a text unit in the corpus. A text string may be received and a match score between the text string and the language of the language detection model may be determined. The match score may be based on initial and final consonant scores, prefix and suffix scores, and/or vowel sequence scores for each word in the text string. If the match score meets a threshold value a follow-up action associated with the language may be performed.
    Type: Grant
    Filed: April 17, 2023
    Date of Patent: April 2, 2024
    Assignee: MICROSOFT TECHNOLOGY LICENSING, LLC
    Inventors: Andrew Stuart Glass, Margaret Hope Magnus, Roland Radtke
  • Publication number: 20240029891
    Abstract: Techniques that include applying machine learning models to episode data, including a cardiac electrogram, stored by a medical device are disclosed. In some examples, based on the application of one or more machine learning models to the episode data, processing circuitry derives, for each of a plurality of arrhythmia type classifications, class activation data indicating varying likelihoods of the classification over a period of time associated with the episode. The processing circuitry may display a graph of the varying likelihoods of the arrhythmia type classifications over the period of time. In some examples, processing circuitry may use arrhythmia type likelihoods and depolarization likelihoods to identify depolarizations, e.g., QRS complexes, during the episode.
    Type: Application
    Filed: October 2, 2023
    Publication date: January 25, 2024
    Inventors: Tarek D. Haddad, Niranjan Chakravarthy, Donald R. Musgrove, Andrew Radtke, Eduardo N. Warman, Rodolphe Katra, Lindsay A. Pedalty
  • Publication number: 20230329624
    Abstract: Techniques are disclosed for explaining and visualizing an output of a machine learning system that detects cardiac arrhythmia in a patient. In one example, a computing device receives cardiac electrogram data sensed by a medical device. The computing device applies a machine learning model, trained using cardiac electrogram data for a plurality of patients, to the received cardiac electrogram data to determine, based on the machine learning model, that an episode of arrhythmia has occurred in the patient and a level of confidence in the determination that the episode of arrhythmia has occurred in the patient. In response to determining that the level of confidence is greater than a predetermined threshold, the computing device displays, to a user, a portion of the cardiac electrogram data, an indication that the episode of arrhythmia has occurred, and an indication of the level of confidence that the episode of arrhythmia has occurred.
    Type: Application
    Filed: June 16, 2023
    Publication date: October 19, 2023
    Inventors: Lindsay A. Pedalty, Niranjan Chakravarthy, Rodolphe Katra, Tarek D. Haddad, Andrew Radtke, Siddharth Dani, Donald R. Musgrove
  • Publication number: 20230330425
    Abstract: Techniques are disclosed for a multi-tier system for predicting cardiac arrhythmia in a patient. In one example, a computing device processes parametric patient data and provider data for a patient to generate a long-term probability that a cardiac arrhythmia will occur in the patient within a first time period. In response to determining that the cardiac arrhythmia is likely to occur within the first time period, the computing device causes a medical device to process the parametric patient data to generate a short-term probability that the cardiac arrhythmia will occur in the patient within a second time period. In response to determining that the cardiac arrhythmia is likely to occur within the second time period, the medical device performs a remediative action to reduce the likelihood that the cardiac arrhythmia will occur.
    Type: Application
    Filed: April 28, 2023
    Publication date: October 19, 2023
    Inventors: Tarek D. Haddad, Athula I. Abeyratne, Mark L. Brown, Donald R. Musgrove, Andrew Radtke, Mugdha V. Tasgaonkar
  • Publication number: 20230320648
    Abstract: Techniques are disclosed for using both feature delineation and machine learning to detect cardiac arrhythmia. A computing device receives cardiac electrogram data of a patient sensed by a medical device. The computing device obtains, via feature-based delineation of the cardiac electrogram data, a first classification of arrhythmia in the patient. The computing device applies a machine learning model to the received cardiac electrogram data to obtain a second classification of arrhythmia in the patient. As one example, the computing device uses the first and second classifications to determine whether an episode of arrhythmia has occurred in the patient. As another example, the computing device uses the second classification to verify the first classification of arrhythmia in the patient. The computing device outputs a report indicating that the episode of arrhythmia has occurred and one or more cardiac features that coincide with the episode of arrhythmia.
    Type: Application
    Filed: June 8, 2023
    Publication date: October 12, 2023
    Inventors: Niranjan Chakravarthy, Siddharth Dani, Tarek D. Haddad, Donald R. Musgrove, Andrew Radtke, Eduardo N. Warman, Rodolphe Katra, Lindsay A. Pedalty
  • Patent number: 11776691
    Abstract: Techniques that include applying machine learning models to episode data, including a cardiac electrogram, stored by a medical device are disclosed. In some examples, based on the application of one or more machine learning models to the episode data, processing circuitry derives, for each of a plurality of arrhythmia type classifications, class activation data indicating varying likelihoods of the classification over a period of time associated with the episode. The processing circuitry may display a graph of the varying likelihoods of the arrhythmia type classifications over the period of time. In some examples, processing circuitry may use arrhythmia type likelihoods and depolarization likelihoods to identify depolarizations, e.g., QRS complexes, during the episode.
    Type: Grant
    Filed: April 10, 2020
    Date of Patent: October 3, 2023
    Assignee: Medtronic, Inc.
    Inventors: Tarek D. Haddad, Niranjan Chakravarthy, Donald R. Musgrove, Andrew Radtke, Eduardo N. Warman, Rodolphe Katra, Lindsay A. Pedalty
  • Publication number: 20230290512
    Abstract: Techniques are disclosed for using feature delineation to reduce the impact of machine learning cardiac arrhythmia detection on power consumption of medical devices. In one example, a medical device performs feature-based delineation of cardiac electrogram data sensed from a patient to obtain cardiac features indicative of an episode of arrhythmia in the patient. The medical device determines whether the cardiac features satisfy threshold criteria for application of a machine learning model for verifying the feature-based delineation of the cardiac electrogram data. In response to determining that the cardiac features satisfy the threshold criteria, the medical device applies the machine learning model to the sensed cardiac electrogram data to verify that the episode of arrhythmia has occurred or determine a classification of the episode of arrhythmia.
    Type: Application
    Filed: May 19, 2023
    Publication date: September 14, 2023
    Inventors: Niranjan Chakravarthy, Siddharth Dani, Tarek D. Haddad, Donald R. Musgrove, Andrew Radtke, Rodolphe Katra, Lindsay A. Pedalty
  • Patent number: 11723577
    Abstract: Techniques are disclosed for explaining and visualizing an output of a machine learning system that detects cardiac arrhythmia in a patient. In one example, a computing device receives cardiac electrogram data sensed by a medical device. The computing device applies a machine learning model, trained using cardiac electrogram data for a plurality of patients, to the received cardiac electrogram data to determine, based on the machine learning model, that an episode of arrhythmia has occurred in the patient and a level of confidence in the determination that the episode of arrhythmia has occurred in the patient. In response to determining that the level of confidence is greater than a predetermined threshold, the computing device displays, to a user, a portion of the cardiac electrogram data, an indication that the episode of arrhythmia has occurred, and an indication of the level of confidence that the episode of arrhythmia has occurred.
    Type: Grant
    Filed: April 16, 2020
    Date of Patent: August 15, 2023
    Assignee: Medtronic, Inc.
    Inventors: Lindsay A. Pedalty, Niranjan Chakravarthy, Rodolphe Katra, Tarek D. Haddad, Andrew Radtke, Siddharth Dani, Donald R. Musgrove
  • Publication number: 20230248319
    Abstract: Techniques are disclosed for monitoring a patient for the occurrence of cardiac arrhythmias. A computing system obtains a cardiac electrogram (EGM) strip for a current patient. Additionally, the computing system may apply a first cardiac rhythm classifier (CRC) with a segment of the cardiac EGM strip as input. The first CRC is trained on training cardiac EGM strips from a first population. The first CRC generates first data regarding an aspect of a cardiac rhythm of the current patient. The computing system may also apply a second CRC with the segment of the cardiac EGM strip as input. The second CRC is trained on training cardiac EGM strips from a smaller, second population. The second CRC generates second data regarding the aspect of the cardiac rhythm of the current patient. The computing system may generate output data based on the first and/or second data.
    Type: Application
    Filed: April 21, 2023
    Publication date: August 10, 2023
    Inventors: Niranjan Chakravarthy, Siddharth Dani, Tarek D. Haddad, Rodolphe Katra, Donald R. Musgrove, Lindsay A. Pedalty, Andrew Radtke
  • Patent number: 11696718
    Abstract: Techniques are disclosed for using both feature delineation and machine learning to detect cardiac arrhythmia. A computing device receives cardiac electrogram data of a patient sensed by a medical device. The computing device obtains, via feature-based delineation of the cardiac electrogram data, a first classification of arrhythmia in the patient. The computing device applies a machine learning model to the received cardiac electrogram data to obtain a second classification of arrhythmia in the patient. As one example, the computing device uses the first and second classifications to determine whether an episode of arrhythmia has occurred in the patient. As another example, the computing device uses the second classification to verify the first classification of arrhythmia in the patient. The computing device outputs a report indicating that the episode of arrhythmia has occurred and one or more cardiac features that coincide with the episode of arrhythmia.
    Type: Grant
    Filed: July 12, 2021
    Date of Patent: July 11, 2023
    Assignee: Medtronic, Inc.
    Inventors: Niranjan Chakravarthy, Siddharth Dani, Tarek D. Haddad, Donald R. Musgrove, Andrew Radtke, Eduardo N. Warman, Rodolphe Katra, Lindsay A. Pedalty
  • Patent number: 11694804
    Abstract: Techniques are disclosed for using feature delineation to reduce the impact of machine learning cardiac arrhythmia detection on power consumption of medical devices. In one example, a medical device performs feature-based delineation of cardiac electrogram data sensed from a patient to obtain cardiac features indicative of an episode of arrhythmia in the patient. The medical device determines whether the cardiac features satisfy threshold criteria for application of a machine learning model for verifying the feature-based delineation of the cardiac electrogram data. In response to determining that the cardiac features satisfy the threshold criteria, the medical device applies the machine learning model to the sensed cardiac electrogram data to verify that the episode of arrhythmia has occurred or determine a classification of the episode of arrhythmia.
    Type: Grant
    Filed: April 17, 2020
    Date of Patent: July 4, 2023
    Assignee: Medtronic, Inc.
    Inventors: Niranjan Chakravarthy, Siddharth Dani, Tarek D. Haddad, Donald R. Musgrove, Andrew Radtke, Rodolphe Katra, Lindsay A. Pedalty
  • Patent number: 11679268
    Abstract: Techniques are disclosed for a multi-tier system for predicting cardiac arrhythmia in a patient. In one example, a computing device processes parametric patient data and provider data for a patient to generate a long-term probability that a cardiac arrhythmia will occur in the patient within a first time period. In response to determining that the cardiac arrhythmia is likely to occur within the first time period, the computing device causes a medical device to process the parametric patient data to generate a short-term probability that the cardiac arrhythmia will occur in the patient within a second time period. In response to determining that the cardiac arrhythmia is likely to occur within the second time period, the medical device performs a remediative action to reduce the likelihood that the cardiac arrhythmia will occur.
    Type: Grant
    Filed: October 4, 2019
    Date of Patent: June 20, 2023
    Assignee: Medtronic, Inc.
    Inventors: Tarek D Haddad, Athula I Abeyratne, Mark L. Brown, Donald R Musgrove, Andrew Radtke, Mugdha V Tasgaonkar
  • Publication number: 20230149726
    Abstract: Techniques are disclosed for monitoring a patient for the occurrence of a cardiac arrhythmia. A computing system generates sample probability values by applying a machine learning model to sample patient data. The machine learning model determines a respective probability value that indicates a probability that the cardiac arrhythmia occurred during each respective temporal window. The computing system outputs a user interface comprising graphical data based on the sample probability values and receives, via the user interface, an indication of user input to select a probability threshold for a patient. The computing system receives patient data for the patient and applies the machine learning model to the patient data to determine a current probability value. In response to the determination that the current probability exceeds the probability threshold for the patient, the computing system generates an alert indicating the patient has likely experienced the occurrence of the cardiac arrhythmia.
    Type: Application
    Filed: January 18, 2023
    Publication date: May 18, 2023
    Inventors: Siddharth Dani, Tarek D. Haddad, Donald R. Musgrove, Andrew Radtke, Niranjan Chakravarthy, Rodolphe Katra, Lindsay A. Pedalty
  • Patent number: 11633159
    Abstract: Techniques are disclosed for monitoring a patient for the occurrence of cardiac arrhythmias. A computing system obtains a cardiac electrogram (EGM) strip for a current patient. Additionally, the computing system may apply a first cardiac rhythm classifier (CRC) with a segment of the cardiac EGM strip as input. The first CRC is trained on training cardiac EGM strips from a first population. The first CRC generates first data regarding an aspect of a cardiac rhythm of the current patient. The computing system may also apply a second CRC with the segment of the cardiac EGM strip as input. The second CRC is trained on training cardiac EGM strips from a smaller, second population. The second CRC generates second data regarding the aspect of the cardiac rhythm of the current patient. The computing system may generate output data based on the first and/or second data.
    Type: Grant
    Filed: April 16, 2020
    Date of Patent: April 25, 2023
    Assignee: MEDTRONIC, INC.
    Inventors: Niranjan Chakravarthy, Siddharth Dani, Tarek D. Haddad, Rodolphe Katra, Donald R. Musgrove, Lindsay A. Pedalty, Andrew Radtke
  • Patent number: 11617533
    Abstract: Techniques are disclosed for explaining and visualizing an output of a machine learning system that detects cardiac arrhythmia in a patient. In one example, a computing device receives cardiac electrogram data sensed by a medical device. The computing device applies a machine learning model, trained using cardiac electrogram data for a plurality of patients, to the received cardiac electrogram data to determine, based on the machine learning model, that an episode of arrhythmia has occurred in the patient and a level of confidence in the determination that the episode of arrhythmia has occurred in the patient. In response to determining that the level of confidence is greater than a predetermined threshold, the computing device displays, to a user, a portion of the cardiac electrogram data, an indication that the episode of arrhythmia has occurred, and an indication of the level of confidence that the episode of arrhythmia has occurred.
    Type: Grant
    Filed: July 16, 2021
    Date of Patent: April 4, 2023
    Assignee: Medtronic, Inc.
    Inventors: Lindsay A. Pedalty, Niranjan Chakravarthy, Rodolphe Katra, Tarek D. Haddad, Andrew Radtke, Siddharth Dani, Donald R. Musgrove
  • Patent number: 11596342
    Abstract: Techniques are disclosed for automatically calibrating a reference orientation of an implantable medical device (IMD) within a patient. In one example, sensors of an IMD sense a plurality of orientation vectors of the IMD with respect to a gravitational field. Processing circuitry of the IMD processes the plurality of orientation vectors to identify an upright vector that corresponds to an upright posture of the patient. The processing circuitry classifies the plurality of orientation vectors with respect to the upright vector to define a sagittal plane of the patient and a transverse plane of the patient. The processing circuitry determines, based on the upright vector, the sagittal plane, and the transverse plane, a reference orientation of the IMD within the patient. As the orientation of the IMD within the patient changes over time, the processing circuitry may recalibrate its reference orientation and accurately detect a posture of the patient.
    Type: Grant
    Filed: June 23, 2020
    Date of Patent: March 7, 2023
    Assignee: Medtronic, Inc.
    Inventors: Andrew Radtke, Tarek D. Haddad, Michelle M. Galarneau, Vinod Sharma, Jeffrey D. Wilkinson, Brian B. Lee, Eduardo N. Warman
  • Patent number: 11583687
    Abstract: Techniques are disclosed for monitoring a patient for the occurrence of a cardiac arrhythmia. A computing system generates sample probability values by applying a machine learning model to sample patient data. The machine learning model determines a respective probability value that indicates a probability that the cardiac arrhythmia occurred during each respective temporal window. The computing system outputs a user interface comprising graphical data based on the sample probability values and receives, via the user interface, an indication of user input to select a probability threshold for a patient. The computing system receives patient data for the patient and applies the machine learning model to the patient data to determine a current probability value. In response to the determination that the current probability exceeds the probability threshold for the patient, the computing system generates an alert indicating the patient has likely experienced the occurrence of the cardiac arrhythmia.
    Type: Grant
    Filed: April 16, 2020
    Date of Patent: February 21, 2023
    Assignee: Medtronic, Inc.
    Inventors: Siddharth Dani, Tarek D. Haddad, Donald R. Musgrove, Andrew Radtke, Niranjan Chakravarthy, Rodolphe Katra, Lindsay A. Pedalty
  • Patent number: 11475998
    Abstract: Techniques are disclosed for preparing data for use in artificial intelligence (AI)-based cardiac arrhythmia detection. In accordance with the techniques of this disclosure, a computing system may obtain a cardiac electrogram (EGM) strip that represents a waveform of a cardiac rhythm of a same patient. Additionally, the computing system may preprocess the cardiac EGM strip. The computing system may then apply a deep learning model to the preprocessed cardiac EGM strip to generate arrhythmia data indicating whether the cardiac EGM strip represents one or more occurrences of one or more cardiac arrhythmias.
    Type: Grant
    Filed: April 17, 2020
    Date of Patent: October 18, 2022
    Assignee: Medtronic, Inc.
    Inventors: Donald R. Musgrove, Niranjan Chakravarthy, Siddharth Dani, Tarek D. Haddad, Andrew Radtke, Rodolphe Katra, Lindsay A. Pedalty
  • Patent number: 11443852
    Abstract: Techniques are disclosed for using feature delineation to reduce the impact of machine learning cardiac arrythmia detection on power consumption of medical devices. In one example, a medical device performs feature-based delineation of cardiac electrogram data sensed from a patient to obtain cardiac features indicative of an episode of arrythmia in the patient. The medical device determines whether the cardiac features satisfy threshold criteria for application of a machine learning model for verifying the feature-based delineation of the cardiac electrogram data. In response to determining that the cardiac features satisfy the threshold criteria, the medical device applies the machine learning model to the sensed cardiac electrogram data to verify that the episode of arrhythmia has occurred or determine a classification of the episode of arrythmia.
    Type: Grant
    Filed: July 16, 2021
    Date of Patent: September 13, 2022
    Assignee: Medtronic, Inc.
    Inventors: Niranjan Chakravarthy, Siddharth Dani, Tarek D. Haddad, Donald R. Musgrove, Andrew Radtke, Rodolphe Katra, Lindsay A. Pedalty
  • Publication number: 20220246014
    Abstract: A medical device is configured to produce an accelerometer signal and detect a patient fall from the accelerometer signal. The device generates a body posture signal and a body acceleration signal from the accelerometer signal and detects a patient fall in response to determining that the body posture signal and the body acceleration signal meet fall detection criteria. The medical device is configured to receive a truth signal from another device that is not the medical device. The truth signal may indicate that the detected patient fall is a falsely detected patient fall and, responsive to receiving the truth signal, the medical device adjusts at least one fall detection control parameter.
    Type: Application
    Filed: April 18, 2022
    Publication date: August 4, 2022
    Inventors: Michelle M. GALARNEAU, Brian B. LEE, Andrew RADTKE, Vinod SHARMA