Patents by Inventor Andrew Ritenour

Andrew Ritenour has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9368670
    Abstract: Disclosed herein are embodiments of methods for making GaAs thin films, such as photovoltaic GaAs thin films. The methods disclosed herein utilize sources, precursors, and reagents that do not produce (or require) toxic gas and that are readily available and relatively low in cost. In some embodiments, the methods are readily scalable for industrial applications and can provide GaAs thin films having properties that are at least comparable to or potentially superior to GaAs films obtained from conventional methods.
    Type: Grant
    Filed: April 21, 2015
    Date of Patent: June 14, 2016
    Assignee: University of Oregon
    Inventors: Shannon Boettcher, Andrew Ritenour, Jason Boucher, Ann Greenaway
  • Publication number: 20150303347
    Abstract: Disclosed herein are embodiments of methods for making GaAs thin films, such as photovoltaic GaAs thin films. The methods disclosed herein utilize sources, precursors, and reagents that do not produce (or require) toxic gas and that are readily available and relatively low in cost. In some embodiments, the methods are readily scalable for industrial applications and can provide GaAs thin films having properties that are at least comparable to or potentially superior to GaAs films obtained from conventional methods.
    Type: Application
    Filed: April 21, 2015
    Publication date: October 22, 2015
    Inventors: Shannon Boettcher, Andrew Ritenour, Jason Boucher, Ann Greenaway
  • Patent number: 8884270
    Abstract: Vertical junction field effect transistors (VJFETs) having improved heat dissipation at high current flow while maintaining the desirable specific on-resistance and normalized saturated drain current properties characteristic of devices having small pitch lengths are described. The VJFETs comprise one or more electrically active source regions in electrical contact with the source metal of the device and one or more electrically inactive source regions not in electrical contact with the source metal of the device. The electrically inactive source regions dissipate heat generated by the electrically active source regions during current flow.
    Type: Grant
    Filed: March 30, 2012
    Date of Patent: November 11, 2014
    Assignee: Power Integrations, Inc.
    Inventors: Janna Casady, Jeffrey Casady, Kiran Chatty, David Sheridan, Andrew Ritenour
  • Patent number: 8659057
    Abstract: A vertical junction field effect transistor (VJFET) having a self-aligned pin, a p+/n/n+ or a p+/p/n+ gate-source junction is described. The device gate can be self-aligned to within 0.5 ?m to the source in order to maintain good high voltage performance (i.e. low DIBL) while reducing gate-source junction leakage under reverse bias. The device can be a wide-bandgap semiconductor device such as a SiC vertical channel junction field effect. Methods of making the device are also described.
    Type: Grant
    Filed: May 20, 2011
    Date of Patent: February 25, 2014
    Assignee: Power Integrations, Inc.
    Inventors: Andrew Ritenour, David C. Sheridan
  • Patent number: 8466017
    Abstract: Semiconductor devices and methods of making the devices are described. The devices can be junction field-effect transistors (JFETs) or diodes such as junction barrier Schottky (JBS) diodes or PiN diodes. The devices are made using selective ion implantation using an implantation mask. The devices have implanted sidewalls formed by scattering of normal or near normal incident ions from the implantation mask. Vertical junction field-effect transistors with long channel length are also described. The devices can be made from a wide-bandgap semiconductor material such as silicon carbide (SiC) and can be used in high temperature and high power applications.
    Type: Grant
    Filed: December 8, 2010
    Date of Patent: June 18, 2013
    Assignee: Power Integrations, Inc.
    Inventors: David C. Sheridan, Andrew Ritenour
  • Publication number: 20130011979
    Abstract: A vertical junction field effect transistor (VJFET) having a self-aligned pin, a p+/n/n+ or a p+/p/n+ gate-source junction is described. The device gate can be self-aligned to within 0.5 ?m to the source in order to maintain good high voltage performance (i.e. low DIBL) while reducing gate-source junction leakage under reverse bias. The device can be a wide-bandgap semiconductor device such as a SiC vertical channel junction field effect. Methods of making the device are also described.
    Type: Application
    Filed: September 13, 2012
    Publication date: January 10, 2013
    Applicant: SS SC IP, LLC
    Inventors: Andrew RITENOUR, David C. SHERIDAN
  • Publication number: 20120261675
    Abstract: Vertical junction field effect transistors (VJFETs) having improved heat dissipation at high current flow while maintaining the desirable specific on-resistance and normalized saturated drain current properties characteristic of devices having small pitch lengths are described. The VJFETs comprise one or more electrically active source regions in electrical contact with the source metal of the device and one or more electrically inactive source regions not in electrical contact with the source metal of the device. The electrically inactive source regions dissipate heat generated by the electrically active source regions during current flow.
    Type: Application
    Filed: March 30, 2012
    Publication date: October 18, 2012
    Applicant: SS SC IP, LLC
    Inventors: Janna CASADY, Jeffrey CASADY, Kiran CHATTY, David SHERIDAN, Andrew RITENOUR
  • Publication number: 20110291107
    Abstract: A vertical junction field effect transistor (VJFET) having a self-aligned pin, a p+/n/n+ or a p+/p/n+ gate-source junction is described. The device gate can be self-aligned to within 0.5 ?m to the source in order to maintain good high voltage performance (i.e. low DIBL) while reducing gate-source junction leakage under reverse bias. The device can be a wide-bandgap semiconductor device such as a SiC vertical channel junction field effect. Methods of making the device are also described.
    Type: Application
    Filed: May 20, 2011
    Publication date: December 1, 2011
    Applicant: SEMISOUTH LABORATORIES, INC.
    Inventors: Andrew Ritenour, David C. Sheridan
  • Patent number: 7994548
    Abstract: Semiconductor devices are described wherein current flow in the device is confined between the rectifying junctions (e.g., p-n junctions or metal-semiconductor junctions). The device provides non-punch-through behavior and enhanced current conduction capability. The devices can be power semiconductor devices as such as Junction Field-Effect Transistors (VJFETs), Static Induction Transistors (SITs), Junction Field Effect Thyristors, or JFET current limiters. The devices can be made in wide bandgap semiconductors such as silicon carbide (SiC). According to some embodiments, the device can be a normally-off SiC vertical junction field effect transistor. Methods of making the devices and circuits comprising the devices are also described.
    Type: Grant
    Filed: July 10, 2008
    Date of Patent: August 9, 2011
    Assignee: Semisouth Laboratories, Inc.
    Inventors: David C. Sheridan, Andrew Ritenour
  • Publication number: 20110133212
    Abstract: Semiconductor devices and methods of making the devices are described. The devices can be junction field-effect transistors (JFETs) or diodes such as junction barrier Schottky (JBS) diodes or PiN diodes. The devices are made using selective ion implantation using an implantation mask. The devices have implanted sidewalls formed by scattering of normal or near normal incident ions from the implantation mask. Vertical junction field-effect transistors with long channel length are also described. The devices can be made from a wide-bandgap semiconductor material such as silicon carbide (SiC) and can be used in high temperature and high power applications.
    Type: Application
    Filed: December 8, 2010
    Publication date: June 9, 2011
    Applicant: SEMISOUTH LABORATORIES, INC.
    Inventors: David C. SHERIDAN, Andrew RITENOUR
  • Publication number: 20090278137
    Abstract: Semiconductor devices are described wherein current flow in the device is confined between the rectifying junctions (e.g., p-n junctions or metal-semiconductor junctions). The device provides non-punch-through behavior and enhanced current conduction capability. The devices can be power semiconductor devices as such as Junction Field-Effect Transistors (VJFETs), Static Induction Transistors (SITs), Junction Field Effect Thyristors, or JFET current limiters. The devices can be made in wide bandgap semiconductors such as silicon carbide (SiC). According to some embodiments, the device can be a normally-off SiC vertical junction field effect transistor. Methods of making the devices and circuits comprising the devices are also described.
    Type: Application
    Filed: July 10, 2008
    Publication date: November 12, 2009
    Applicant: SemiSouth Laboratories, Inc.
    Inventors: David C. Sheridan, Andrew Ritenour
  • Publication number: 20070069247
    Abstract: An electro-optic display comprises a substrate (100), non-linear devices (102) disposed substantially in one plane on the substrate (100), pixel electrodes (106) connected to the non-linear devices (102), an electro-optic medium (110) and a common electrode (112) on the opposed side of the electro-optic medium (110) from the pixel electrodes (106). The moduli of the various parts of the display are arranged so that, when the display is curved, the neutral axis or neutral plane lies substantially in the plane of the non-linear devices (102).
    Type: Application
    Filed: November 16, 2006
    Publication date: March 29, 2007
    Applicant: E INK CORPORATION
    Inventors: Karl Amundson, Andrew Ritenour, Gregg Duthaler, Paul Drzaic, Yu Chen, Peter Kazlas
  • Publication number: 20070035532
    Abstract: A thin-film transistor includes a gate electrode having a first gate electrode edge and a second gate electrode edge opposite the first gate electrode edge. The TFT also includes a drain electrode having a first drain electrode edge that overlaps the first gate electrode edge, and a second drain electrode edge that overlaps the second gate electrode edge. A method for fabricating a diode array for use in a display includes deposition of a conductive layer adjacent to a substrate, deposition of a doped semiconductor layer adjacent to the substrate, and deposition of an undoped semiconductor layer adjacent to the substrate. A display pixel unit provides reduced capacitative coupling between a pixel electrode and a source line. The unit includes a transistor, the pixel electrode, and the source line. The source line includes an extension that provides a source for the transistor. A patterned conductive portion is disposed adjacent to the source line.
    Type: Application
    Filed: July 31, 2006
    Publication date: February 15, 2007
    Applicant: E INK CORPORATION
    Inventors: Karl Amundson, Yu Chen, Kevin Denis, Paul Drzaic, Peter Kazlas, Andrew Ritenour
  • Publication number: 20060223282
    Abstract: A non-linear element is formed on a flexible substrate by securing the substrate to a rigid carrier, forming the non-linear element, and then separating the flexible substrate from the carrier. The process allows flexible substrates to be processed in a conventional fab intended to process rigid substrates. In a second method, a transistor is formed on a insulating substrate by forming gate electrodes, depositing a dielectric layer, a semiconductor layer and a conductive layer, patterning the conductive layer to form source, drain and pixel electrodes, covering the channel region of the resultant transistor with an etch-resistant material and etching using the etch-resistant material and the conductive layer as a mask, the etching extending substantially through the semiconductor layer between adjacent transistors.
    Type: Application
    Filed: June 15, 2006
    Publication date: October 5, 2006
    Applicant: E INK CORPORATION
    Inventors: Karl Amundson, Guy Danner, Gregg Duthaler, Peter Kazlas, Yu Chen, Kevin Denis, Nathan Kane, Andrew Ritenour
  • Publication number: 20060099782
    Abstract: Interfaces that are portions of semiconductor structures used in integrated circuits and optoelectronic devices are described. In one instance, the semiconductor structure has an interface including a semiconductor surface, an interfacial layer including sulfur, and an electrically active layer (e.g., a dielectric or a metal). Such an interface can inhibit oxidation and improve the carrier mobility of the semiconductor structures in which such an interface is incorporated. The interfacial layer can be created by exposure of the semiconductor surface to sulfur donating compounds (e.g., H2S or SF6) and, optionally, heating.
    Type: Application
    Filed: October 14, 2005
    Publication date: May 11, 2006
    Applicant: Massachusetts Institute of Technology
    Inventor: Andrew Ritenour
  • Publication number: 20050078099
    Abstract: An electro-optic display comprises a substrate (100), non-linear devices (102) disposed substantially in one plane on the substrate (100), pixel electrodes (106) connected to the non-linear devices (102), an electro-optic medium (110) and a common electrode (112) on the opposed side of the electro-optic medium (110) from the pixel electrodes (106). The moduli of the various parts of the display are arranged so that, when the display is curved, the neutral axis or neutral plane lies substantially in the plane of the non-linear devices (102).
    Type: Application
    Filed: October 27, 2004
    Publication date: April 14, 2005
    Applicant: E INK CORPORATION
    Inventors: Karl Amundson, Andrew Ritenour, Gregg Duthaler, Paul Drzaic, Yu Chen, Peter Kazlas