Patents by Inventor Andrew S. Dewa

Andrew S. Dewa has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20030116815
    Abstract: A process for manufacturing a wafer having a multiplicity of MEMS devices such as mirrors with gimbals formed thereon is disclosed. The devices on the wafer include features defined by a wide line between features which extend completely through the wafer, and have a ratio of greater than about 4:1 with respect to the narrow lines which separate individual devices. Each individual device is separated by narrow gaps or line widths which are, for example, about 10 &mgr;m. Thus, the etching process is controlled such that the features defined by the wide lines are etched completely through, whereas the individual devices are separated by narrow lines which are not etched completely through the wafer. Therefore, the multiplicity of devices remain attached together even after the wafer is released from a backing wafer. Thus, the wafer with the many devices still attached together allows further processing such as packaging, testing, transport, etc. without the required handling of individual devices.
    Type: Application
    Filed: February 14, 2002
    Publication date: June 26, 2003
    Inventor: Andrew S. Dewa
  • Publication number: 20030117685
    Abstract: A micromirror (110) includes a frame portion (112), a gimbal portion (114) and a mirror portion (116) formed from a single piece of material. A plurality of truss members (140/142) are disposed beneath the gimbal portion (114) and mirror portion (116), allowing the gimbal and mirror portions (114/116) to be made of a thinner material, reducing the mass and increasing the resonant frequency of the micromirror device(110).
    Type: Application
    Filed: December 20, 2001
    Publication date: June 26, 2003
    Inventor: Andrew S. Dewa
  • Publication number: 20030119275
    Abstract: A process for manufacturing a wafer from a layer of material such as silicon and having a multiplicity of MEMS devices such as mirrors with gimbals formed thereon is disclosed. The features of the devices on the wafer as well as the boundaries which separate individual devices are defined by lines having a constant width so as to avoid microloading effects. Waste areas of the layer of material which are greater than the constant line width are removed as breakout pieces during the release process.
    Type: Application
    Filed: May 15, 2002
    Publication date: June 26, 2003
    Inventors: Andrew S. Dewa, John W. Orcutt, David Ian Forehand
  • Publication number: 20020118518
    Abstract: The present invention discloses drive apparatus for rotating a mirror used for switching light signals. The drive apparatus has reduced internal wiring and uses a base printed circuit board which is mounted to a support printed circuit board by sandwiching conductive ball connections between matching traces or pads on the two printed circuit boards. A drive module is also included between the two printed circuit boards which can be either a drive coil or an electrostatic plate and is used to rotate the mirrors. The use of the bump grid array or conductive ball connections significantly reduces the amount of internal wiring required.
    Type: Application
    Filed: January 31, 2002
    Publication date: August 29, 2002
    Inventors: John W. Orcutt, Arthur Monroe Turner, Andrew S. Dewa, Terence J. Murphy, Kim D. Hyland
  • Publication number: 20020074310
    Abstract: A method of manufacturing an array of microstructures, such as a micromirror array assembly (10, 20) for use in optical modules (5, 17) in a wireless network system, is disclosed. The micromirror array assembly (10, 20) includes a plurality of mirrors (29) monolithically formed from a silicon wafer (70) with a frame (43), attached by way of hinges (55) and gimbal portions (45). The wafer is temporarily bonded to a support wafer (60) while permanent magnets (53) are attached to each of the gimbal portions (45) associated with the mirrors (29), through holes etched through the mounting wafer (60). The resulting frame (43) is then mounted to a coil driver assembly (50) so that coil drivers (34) can control the rotation of each mirror (29), under separate control from control circuitry (14, 24). The micromirror array assembly (10, 20) is able to support higher signal energy at larger spot sizes, and also enables multiplexed transmission and receipt, as well as sampling of the received beam for quality sensing.
    Type: Application
    Filed: August 29, 2001
    Publication date: June 20, 2002
    Inventor: Andrew S. Dewa
  • Publication number: 20020018615
    Abstract: An optical matrix switch station (1) is shown mounting a plurality of optical switch units (15, 17), each of which includes a mirror (29), moveable in two axes, for purpose of switching optical beams from one optical fiber to another. A mirror assembly (41) includes a single body of silicon comprising a frame portion (43), gimbals (45), mirror portion (47), and related hinges (55). Magnets (53, 54) and air coils (89) are utilized to position the central mirror surface (29) to a selected orientation. The moveable mirror and associated magnets along with control LED's (71) are hermetically packaged in a header (81) and mounted with the air coils on mounting bracket (85) to form a micromirror assembly package (99) mounted in each optical switch unit.
    Type: Application
    Filed: September 21, 2001
    Publication date: February 14, 2002
    Inventors: Herzel Laor, Philip A. Congdon, Andrew S. Dewa, David I. Forehand, Tsen-Hwang Lin, John W. Orcutt, James A. Sisco
  • Patent number: 6295154
    Abstract: An optical matrix switch station (1) is shown mounting a plurality of optical switch units (15, 17), each of which includes a mirror (29), moveable in two axes, for purpose of switching optical beams from one optical fiber to another. A mirror assembly (41) includes a single body of silicon comprising a frame portion (43), gimbals (45), mirror portion (47), and related hinges (55). Magnets (53, 54) and air coils (89) are utilized to position the central mirror surface (29) to a selected orientation. The moveable mirror and associated magnets along with control LED's (71) are hermetically packaged in a header (81) and mounted with the air coils on mounting bracket (85) to form a micromirror assembly package (99) mounted in each optical switch unit.
    Type: Grant
    Filed: May 12, 1999
    Date of Patent: September 25, 2001
    Assignee: Texas Instruments Incorporated
    Inventors: Herzel Laor, Philip A. Congdon, Andrew S. Dewa, David I. Forehand, Tsen-Hwang Lin, John W. Orcutt, James A. Sisco
  • Patent number: 5788468
    Abstract: A microfabricated, remotely actuated fluid pump includes a LIGA-fabricated movable member disposed within a cavity. The LIGA-fabricated movable member and the cavity cooperate to (a) define a sufficiently small clearance therebetween to achieve effective pumping action while (b) presenting a sufficiently low-friction fit to enable remote actuation. Such a pump can take the form of a piston pump, a vane pump, a centrifugal pump, a gear pump, etc. Other fluidic devices including flow sensors, piston valves, hydraulic motors, nozzles, and connectors can be fabricated using similar principles.
    Type: Grant
    Filed: November 3, 1994
    Date of Patent: August 4, 1998
    Assignee: Memstek Products, LLC
    Inventors: Andrews S. Dewa, Christophe J. P. Sevrain