Patents by Inventor Andrew Schnitgen

Andrew Schnitgen has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7465776
    Abstract: High melt flow rate high crystallinity polypropylene homopolymer are produced in a bulk polymerization process using a Ziegler-Natta catalyst containing a combination of two internal electron donors and selected external donors. The high melt flow rate, high crystallinity polypropylene homopolymers produced according to the current invention display improved flexural modulus and tensile yield stress when nucleated.
    Type: Grant
    Filed: May 30, 2007
    Date of Patent: December 16, 2008
    Assignee: Sunoco, Inc. (R&M)
    Inventors: Craig Meverden, Andrew Schnitgen, Sehyun Kim
  • Publication number: 20070287813
    Abstract: High melt flow rate high crystallinity polypropylene homopolymer are produced in a bulk polymerization process using a Ziegler-Natta catalyst containing a combination of two internal electron donors and selected external donors. The high melt flow rate, high crystallinity polypropylene homopolymers produced according to the current invention display improved flexural modulus and tensile yield stress when nucleated.
    Type: Application
    Filed: May 30, 2007
    Publication date: December 13, 2007
    Inventors: Craig Meverden, Andrew Schnitgen, Sehyun Kim
  • Patent number: 7217768
    Abstract: A paintable impact copolymer composition is produced by in-reactor blending of a xylene insoluble polypropylene fraction and a xylene soluble ethylene-propylene rubber (EPR) fraction. The composition comprises from about 5 wt. % to about 50 wt. % a xylene-soluble portion and from about 50 wt. % to about 95 wt. % a xylene-insoluble portion. The ratio of the weight average molecular weight of said xylene-soluble portion to that of said xylene-insoluble portion is from about 0.5 to about 1.8. The intrinsic viscosity of said xylene-soluble portion is from about 0.5 to about 7.0 dL/g. The xylene-soluble portion comprises from about 30 to about 70 mole percent ethylene units.
    Type: Grant
    Filed: September 29, 2004
    Date of Patent: May 15, 2007
    Assignee: Sunoco, Inc. (R&M)
    Inventors: Jeff S. Salek, Kimberly M. McLoughlin, Dan Rosenthal, Andrew Schnitgen
  • Publication number: 20050234196
    Abstract: A thermoplastic polyolefin having a melt flow rate of 20 dg/min or higher at 230° C. is produced in reactor without visbreaking. By controlling ratio of the weight average molecular weight of the xylene soluble fraction to the weight average molecular weight of the xylene insoluble fraction, a high melt flow thermoplastic polyolefin can be produced having a good balance of impact and stiffness, tensile elongation at break and gloss properties. Optionally, the ratio of the melt flow rate of the homopolymer phase to the melt flow rate of the total thermoplastic polyolefin can also be controlled. By compounding thermoplastic polyolefins according to the current invention with one or more modifiers, additional compositions can be produced having improved resistance to solvents.
    Type: Application
    Filed: April 19, 2004
    Publication date: October 20, 2005
    Inventors: Sehyun Kim, Andrew Schnitgen, Ruben Migone, Jeffrey Salek
  • Publication number: 20050075458
    Abstract: A paintable impact copolymer composition is produced by in-reactor blending of a xylene insoluble polypropylene fraction and a xylene soluble ethylene-propylene rubber (EPR) fraction. The composition comprises from about 5 wt. % to about 50 wt. % a xylene-soluble portion and from about 50 wt. % to about 95 wt. % a xylene-insoluble portion. The ratio of the weight average molecular weight of said xylene-soluble portion to that of said xylene-insoluble portion is from about 0.5 to about 1.8. The intrinsic viscosity of said xylene-soluble portion is from about 0.5 to about 7.0 dL/g. The xylene-soluble portion comprises from about 30 to about 70 mole percent ethylene units.
    Type: Application
    Filed: September 29, 2004
    Publication date: April 7, 2005
    Inventors: Jeff Salek, Kimberly McLoughlin, Dan Rosenthal, Andrew Schnitgen