Patents by Inventor Andrew Skipor

Andrew Skipor has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20120195022
    Abstract: A backlighting device (300, 400, 500, 600) emitting light having a first wavelength includes a first radiation emission device (302), e.g., an electroluminescent lamp, for emitting radiation having a second wavelength. A layer (306) of a plurality of photon emitting particles (308), e.g., free standing quantum dots or phosphorus particles, emits light having the first wavelength in response to the first radiation emission device (302), the first wavelength being larger than the second wavelength. A transparent material (116, 120, 122) overlies the layer of a plurality of photon emitting particles (308), wherein the light having a first wavelength passes through the transparent material (116, 120, 122). Optionally, a filter (402) may be placed over the layer (306) to block the radiation having a second wavelength, and a scattering layer (604) may be placed over the layer (306) to scatter wavelength other than the first wavelength.
    Type: Application
    Filed: February 6, 2012
    Publication date: August 2, 2012
    Inventors: Andrew Skipor, Rick Latella, Steven Scheifers
  • Patent number: 8128249
    Abstract: A backlighting device (300, 400, 500, 600) emitting light having a first wavelength includes a first radiation emission device (302), e.g., an electroluminescent lamp, for emitting radiation having a second wavelength. A layer (306) of a plurality of photon emitting particles (308), e.g., free standing quantum dots or phosphorus particles, emits light having the first wavelength in response to the first radiation emission device (302), the first wavelength being larger than the second wavelength. A transparent material (116, 120, 122) overlies the layer of a plurality of photon emitting particles (308), wherein the light having a first wavelength passes through the transparent material (116, 120, 122). Optionally, a filter (402) may be placed over the layer (306) to block the radiation having a second wavelength, and a scattering layer (604) may be placed over the layer (306) to scatter wavelength other than the first wavelength.
    Type: Grant
    Filed: August 28, 2007
    Date of Patent: March 6, 2012
    Assignee: QD Vision, Inc.
    Inventors: Andrew Skipor, Rick Latella, Steven Scheifers
  • Publication number: 20090059554
    Abstract: A backlighting device (300, 400, 500, 600) emitting light having a first wavelength includes a first radiation emission device (302), e.g., an electroluminescent lamp, for emitting radiation having a second wavelength. A layer (306) of a plurality of photon emitting particles (308), e.g., free standing quantum dots or phosphorus particles, emits light having the first wavelength in response to the first radiation emission device (302), the first wavelength being larger than the second wavelength. A transparent material (116, 120, 122) overlies the layer of a plurality of photon emitting particles (308), wherein the light having a first wavelength passes through the transparent material (116, 120, 122). Optionally, a filter (402) may be placed over the layer (306) to block the radiation having a second wavelength, and a scattering layer (604) may be placed over the layer (306) to scatter wavelength other than the first wavelength.
    Type: Application
    Filed: August 28, 2007
    Publication date: March 5, 2009
    Applicant: MOTOROLA, INC.
    Inventors: Andrew Skipor, Rick Latella, Steven Scheifers
  • Publication number: 20090054752
    Abstract: A photoplethysmographic sensing system for determining a user's pulse rate includes a light emitting device (100, 201, 310, 500) including a first plurality of light emitting particles (108, 208, 317) having a first diameter and emitting light having a first wavelength. A detector (118, 218, 500) is positioned to receive light emitted from the plurality of light emitting particles (108, 208, 317) and a processing device (500) determines the pulse rate. The light emitting device (100, 201, 310, 500) and the detector (118, 218, 500) are disposed on a flexible polymeric material (102, 202, 334). The light emitting device (100, 201, 310, 500) may include a second plurality of light emitting particles (108, 208, 317) having a second diameter and emitting light having a second wavelength, wherein the processing device (500) determines the user's blood oxygen level. The light emitting particles (108, 208, 317) may comprise one of quantum dots, electroluminescent particles, or organic particles.
    Type: Application
    Filed: August 22, 2007
    Publication date: February 26, 2009
    Applicant: MOTOROLA, INC.
    Inventors: Krishna Jonnalagadda, Di-An Hong, Xun Luo, Francesca Schuler, Andrew Skipor
  • Patent number: 7393716
    Abstract: A semiconductor device comprising organic semiconductor material (14) has one or more barrier layers (16) disposed at least partially thereabout to protect the organic semiconductor material (14) from environment-driven changes that typically lead to inoperability of a corresponding device. If desired, the barrier layer can be comprised of partially permeable material that allows some substances therethrough to thereby effect disabling of the encapsulated organic semiconductor device after a substantially predetermined period of time. Getterers (141) may also be used to protect, at least for a period of time, such organic semiconductor material.
    Type: Grant
    Filed: April 15, 2005
    Date of Patent: July 1, 2008
    Assignee: Motorola, Inc.
    Inventors: Steven Scheifers, Daniel Gamota, Andrew Skipor, Krishna Kalyanasundaram
  • Publication number: 20070089626
    Abstract: A functional ink (200) suitable for use as a dielectric layer (303) in a printed semiconductor device (300) comprises a dielectric carrier (201) and a plurality of dielectric particles (202) sized less than about 1,000 nanometers that are disposed within the dielectric carrier. In a preferred approach the dielectric carrier comprises a dielectric resin and the dielectric particles comprise a ferroelectric material (such as, but not limited to, BaTiO3. So provided, this functional ink can be applied to a substrate (301) of choice through a printing technique of choice to thereby provide a resultant printed semiconductor device, such as a field effect transistor, having a relatively thin dielectric layer comprised of this functional ink.
    Type: Application
    Filed: October 26, 2005
    Publication date: April 26, 2007
    Inventors: Amjad Rasul, Paul Brazis, Daniel Gamota, Andrew Skipor, Jie Zhang
  • Patent number: 7108914
    Abstract: A self-healing polymer composition 10 contains a polymer media 12 and a plurality of microcapsules of flowable polymerizable material 16 dispersed in the polymer media 12, where the microcapsules of flowable polymerizable material 16 contain a flowable polymerizable material 15 and have an outer surface 142 upon which at least one polymerization agent 13 is chemically attached. The microcapsules 16 are effective for rupturing with a failure of the polymeric media 12, and the flowable polymerizable material 15 reacts with the polymerization agent 13 when the polymerizable material 15 makes contact with the polymerization agent 13 upon rupture of the microcapsules 14. There is also provided a method of using the self-healing polymeric composition 10 to repair fractures in polymers, as well as articles of manufacture including the self-healing system, and the microencapsulated polymerizable particles 16 themselves.
    Type: Grant
    Filed: July 15, 2002
    Date of Patent: September 19, 2006
    Assignee: Motorola, Inc.
    Inventors: Andrew Skipor, Steve Scheifer, Bill Olson
  • Publication number: 20060196579
    Abstract: A low temperature, high energy soldering composition for joining metals together contains a fluxing agent and high energy metal particles that possess sufficiently high internal energy, suspended in the fluxing agent, such that the melting point of the high energy metal particles is depressed by at least three degrees Celsius below the normal bulk melting temperature of metal. A solder joint is effected by placing the high energy metal particles in contact with one or more of the metal surfaces and heating the high energy metal particles in the presence of a fluxing agent to melt the high energy metal particles and fuse them to the metal surface.
    Type: Application
    Filed: March 7, 2005
    Publication date: September 7, 2006
    Inventors: Andrew Skipor, Krishna Jonnalagadda, Steven Scheifers
  • Publication number: 20050189537
    Abstract: A semiconductor device comprising organic semiconductor material (14) has one or more barrier layers (16) disposed at least partially thereabout to protect the organic semiconductor material (14) from environment-driven changes that typically lead to inoperability of a corresponding device. If desired, the barrier layer can be comprised of partially permeable material that allows some substances therethrough to thereby effect disabling of the encapsulated organic semiconductor device after a substantially predetermined period of time. Getterers (141) may also be used to protect, at least for a period of time, such organic semiconductor material.
    Type: Application
    Filed: April 15, 2005
    Publication date: September 1, 2005
    Inventors: Steven Scheifers, Daniel Gamota, Andrew Skipor, Krishna Kalyanasundaram
  • Patent number: 6930608
    Abstract: One or more items of apparel have a plurality of sensors (10, 11, and 12) disposed therein (either permanently or temporarily). These sensors sense physical states of the individual wearing the items of apparel and/or of the local environment. In one embodiment, multiple sensors sense, in alternative ways, a parameter that corresponds to a physical state of interest. Information from these alternative sensing approaches is co-processed to yield a resultant parameter value that can be used in various ways. In one embodiment, the parameter value is locally or remotely displayed. In one embodiment, the parameter value is used in comparison against risk thresholds to ascertain a degree of risk to the individual.
    Type: Grant
    Filed: May 14, 2002
    Date of Patent: August 16, 2005
    Assignee: Motorola, INC
    Inventors: Liliana Grajales, John St. Peter, Bill Olson, Mark Allen Krizik, Andrew Skipor
  • Publication number: 20050027078
    Abstract: A self-joining polymer composition, comprising a polymer, a plurality of amine pendant groups attached to the polymer and a plurality of microcapsules of flowable polymerizable material dispersed in the polymer where the microcapsules of flowable polymerizable material including microcapsules and flowable polymerizable material inside the microcapsules. The microcapsules are effective for rupturing with a failure of the polymer so the flowable polymerizable material cross-links with the reactable pendant groups upon rupture of the microcapsules.
    Type: Application
    Filed: July 31, 2003
    Publication date: February 3, 2005
    Inventors: Steven Scheifers, Andrew Skipor, Aaron Brown
  • Publication number: 20040007784
    Abstract: A self-healing polymer composition 10 containing a polymer media 12 and a plurality of microcapsules of flowable polymerizable material 16 dispersed in the polymer media 12, where the microcapsules of flowable polymerizable material 16 contain a flowable polymerizable material 15 and have an outer surface 142 upon which at least one polymerization agent 13 is attached. The microcapsules 16 are effective for rupturing with a failure of the polymeric media 12, and the flowable polymerizable material 15 reacts with the polymerization agent 13 when the polymerizable material 15 makes contact with the polymerization agent 13 upon rupture of the microcapsules 14. There is also provided a method of using the self-healing polymeric composition 10 to repair fractures in polymers, as well as articles of manufacture including the self-healing system, and the microencapsulated polymerizable particles 16 themselves.
    Type: Application
    Filed: July 15, 2002
    Publication date: January 15, 2004
    Applicant: Motorola, Inc.
    Inventors: Andrew Skipor, Steve Scheifer, Bill Olson
  • Publication number: 20040002181
    Abstract: A microelectronic assembly includes a substrate having a plurality of bond pads disposed on a substantially planar die attach surface and an integrated circuit die having a die face and a plurality of bond pads of the die face. The die is provided with a polymeric bead about the outer edges of the die. Die face bond pads are aligned with corresponding substrate bond pads and electrically interconnected by heating to a reflow temperature. Exposure of the polymeric bead to the reflow temperature causes the bead to form a peripheral bond between the die and the substrate.
    Type: Application
    Filed: April 2, 2003
    Publication date: January 1, 2004
    Inventors: Steven M. Scheifers, Andrew Skipor, Daniel Gamota
  • Publication number: 20030214408
    Abstract: One or more items of apparel have a plurality of sensors (10, 11, and 12) disposed therein (either permanently or temporarily). These sensors sense physical states of the individual wearing the items of apparel and/or of the local environment. In one embodiment, multiple sensors sense, in alternative ways, a parameter that corresponds to a physical state of interest. Information from these alternative sensing approaches is co-processed to yield a resultant parameter value that can be used in various ways. In one embodiment, the parameter value is locally or remotely displayed. In one embodiment, the parameter value is used in comparison against risk thresholds to ascertain a degree of risk to the individual.
    Type: Application
    Filed: May 14, 2002
    Publication date: November 20, 2003
    Applicant: Motorola, Inc.
    Inventors: Liliana Grajales, John St. Peter, Bill Olson, Mark Allen Krizik, Andrew Skipor
  • Patent number: 6649852
    Abstract: The organic MEMS according to the present invention comprises a polymeric substrate comprising a substrate surface including a first region and a second region. A polymer coating is applied to the first region to provide a coating surface that is spaced apart from the substrate surface. A terminal is disposed on the second region. A metallic trace is affixed to the coating surface such that the metallic trace forms a flexible extension over the second region. The extension has a rest position where the extension is spaced apart from the terminal, and a flexed position where the extension is disposed towards the terminal. An actuator is used to provide an electric field to deflect the extension from the rest position to the flexed position. By changing the spacing between the extension and the terminal, it is possible to change the electrical condition provided by the MEMS.
    Type: Grant
    Filed: August 14, 2001
    Date of Patent: November 18, 2003
    Assignee: Motorola, Inc.
    Inventors: Marc Chason, Andrew Skipor, Aroon Tungare, Daniel Gamota, Sanjar Ghaem
  • Publication number: 20030188958
    Abstract: The organic MEMS according to the present invention comprises a polymeric substrate comprising a substrate surface including a first region and a second region. A polymer coating is applied to the first region to provide a coating surface that is spaced apart from the substrate surface. A terminal is disposed on the second region. A metallic trace is affixed to the coating surface such that the metallic trace forms a flexible extension over the second region. The extension has a rest position where the extension is spaced apart from the terminal, and a flexed position where the extension is disposed towards the terminal. An actuator is used to provide an electric field to deflect the extension from the rest position to the flexed position. By changing the spacing between the extension and the terminal, it is possible to change the electrical condition provided by the MEMS.
    Type: Application
    Filed: April 4, 2003
    Publication date: October 9, 2003
    Inventors: Marc Chason, Andrew Skipor, Aroon Tungare, Daniel Gamota, Sanjar Ghaem
  • Publication number: 20030183915
    Abstract: A semiconductor device comprising organic semiconductor material (14) has one or more barrier layers (16) disposed at least partially thereabout to protect the organic semiconductor material (14) from environment-driven changes that typically lead to inoperability of a corresponding device. If desired, the barrier layer can be comprised of partially permeable material that allows some substances therethrough to thereby effect disabling of the encapsulated organic semiconductor device after a substantially predetermined period of time. Getterers (141) may also be used to protect, at least for a period of time, such organic semiconductor material.
    Type: Application
    Filed: April 2, 2002
    Publication date: October 2, 2003
    Applicant: Motorola, Inc.
    Inventors: Steven Scheifers, Daniel Gamota, Andrew Skipor, Krishna Kalyanasundaram
  • Patent number: 6562663
    Abstract: A microelectronic assembly includes a substrate having a plurality of bond pads disposed on a substantially planar die attach surface and an integrated circuit die having a die face and a plurality of bond pads of the die face. The die is provided with a polymeric bead about the outer edges of the die. Die face bond pads are aligned with corresponding substrate bond pads and electrically interconnected by heating to a reflow temperature. Exposure of the polymeric bead to the reflow temperature causes the bead to form a peripheral bond between the die and the substrate.
    Type: Grant
    Filed: March 28, 2001
    Date of Patent: May 13, 2003
    Assignee: Motorola, Inc.
    Inventors: Steven M. Scheifers, Andrew Skipor, Daniel Gamota
  • Publication number: 20030034239
    Abstract: The organic MEMS according to the present invention comprises a polymeric substrate comprising a substrate surface including a first region and a second region. A polymer coating is applied to the first region to provide a coating surface that is spaced apart from the substrate surface. A terminal is disposed on the second region. A metallic trace is affixed to the coating surface such that the metallic trace forms a flexible extension over the second region. The extension has a rest position where the extension is spaced apart from the terminal, and a flexed position where the extension is disposed towards the terminal. An actuator is used to provide an electric field to deflect the extension from the rest position to the flexed position. By changing the spacing between the extension and the terminal, it is possible to change the electrical condition provided by the MEMS.
    Type: Application
    Filed: August 14, 2001
    Publication date: February 20, 2003
    Inventors: Marc Chason, Andrew Skipor, Aroon Tungare, Daniel Gamota, Sanjar Ghaem
  • Publication number: 20020142514
    Abstract: A microelectronic assembly includes a substrate having a plurality of bond pads disposed on a substantially planar die attach surface and an integrated circuit die having a die face and a plurality of bond pads of the die face. The die is provided with a polymeric bead about the outer edges of the die. Die face bond pads are aligned with corresponding substrate bond pads and electrically interconnected by heating to a reflow temperature. Exposure of the polymeric bead to the reflow temperature causes the bead to form a peripheral bond between the die and the substrate.
    Type: Application
    Filed: March 28, 2001
    Publication date: October 3, 2002
    Inventors: Steven M. Scheifers, Andrew Skipor, Daniel Gamota