Patents by Inventor Andrew T. Kim

Andrew T. Kim has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11121082
    Abstract: An e-Fuse device including a first electronic feature and a second electronic feature comprised of a conductive material, each of the first electronic feature and the second electronic feature having a width at least as great as a ground rule of a patterning process; and a fuse element comprised of the conductive material having a width less than the ground rule of the patterning process, the fuse element connecting a bottom portion of the first electronic feature and a bottom portion of the second electronic feature. Also disclosed is a method of making the e-Fuse device.
    Type: Grant
    Filed: April 17, 2019
    Date of Patent: September 14, 2021
    Assignee: International Business Machines Corporation
    Inventors: Andrew T. Kim, Baozhen Li, Chih-Chao Yang, Ernest Y. Wu
  • Publication number: 20200335440
    Abstract: An e-Fuse device including a first electronic feature and a second electronic feature comprised of a conductive material, each of the first electronic feature and the second electronic feature having a width at least as great as a ground rule of a patterning process; and a fuse element comprised of the conductive material having a width less than the ground rule of the patterning process, the fuse element connecting a bottom portion of the first electronic feature and a bottom portion of the second electronic feature. Also disclosed is a method of making the e-Fuse device.
    Type: Application
    Filed: April 17, 2019
    Publication date: October 22, 2020
    Inventors: Andrew T. Kim, Baozhen Li, Chih-Chao Yang, Ernest Y. Wu
  • Patent number: 10325862
    Abstract: Reinforcement structures used with a thinned wafer and methods of manufacture are provided. The method includes forming trenches or vias at least partially through a backside of a thinned wafer attached to a carrier wafer. The method further includes depositing material within the trenches or vias to form reinforcement structures on the backside of the thinned wafer. The method further includes removing excess material from a surface of the thinned wafer, which was deposited during the depositing of the material within the vias.
    Type: Grant
    Filed: July 24, 2017
    Date of Patent: June 18, 2019
    Assignee: GLOBALFOUNDRIES INC.
    Inventors: Ronald G. Filippi, Erdem Kaltalioglu, Andrew T. Kim, Ping-Chuan Wang
  • Patent number: 10304783
    Abstract: A semiconductor structure includes filled dual reinforcing trenches that reduce curvature of the semiconductor structure by stiffening the semiconductor structure. The filled dual reinforcing trenches reduce curvature by acting against transverse loading, axial loading, and/or torsional loading of the semiconductor structure that would otherwise result in semiconductor structure curvature. The filled dual reinforcing trenches may be located in an array throughout the semiconductor structure, in particular locations within the semiconductor structure, or at the perimeter of the semiconductor structure.
    Type: Grant
    Filed: September 18, 2017
    Date of Patent: May 28, 2019
    Assignee: International Business Machines Corporation
    Inventors: Erdem Kaltalioglu, Andrew T. Kim, Chengwen Pei, Ping-Chuan Wang
  • Patent number: 10262934
    Abstract: A three plate MIM capacitor structure includes a three plate MIM capacitor, a first wire in a metal layer above/below the three plate MIM, a second wire below/above the three plate MIM, a third wire below/above the three plate MIM, a first via connected to the first test wire, a second via connected to a middle plate of the three plate MIM, and a third via connected to the top and bottom plates of the three plate MIM. The test structure may verify the integrity the MIM capacitor by applying a potential to the first test wire, applying ground potential to both the second test wire and the third test wire, and detecting leakage current across the first wire and the second and third wires or detecting leakage current across the second wire and the third wire.
    Type: Grant
    Filed: November 1, 2017
    Date of Patent: April 16, 2019
    Assignee: International Business Machines Corporation
    Inventors: Andrew T. Kim, Baozhen Li, Barry P. Linder, Ernest Y. Wu
  • Patent number: 10229873
    Abstract: A three plate MIM capacitor test structure includes a three plate MIM capacitor, a first test wire in a metal layer above/below the three plate MIM, a second test wire below/above the three plate MIM, a third test wire below/above the three plate MIM, a first via connected to the first test wire, a second via connected to a middle plate of the three plate MIM, and a third via connected to the top and bottom plates of the three plate MIM. The test structure may verify the integrity the MIM capacitor by applying a potential to the first test wire, applying ground potential to both the second test wire and the third test wire, and detecting leakage current across the first test wire and the second and third test wires or detecting leakage current across the second test wire and the third test wire.
    Type: Grant
    Filed: February 7, 2017
    Date of Patent: March 12, 2019
    Assignee: International Business Machines Corporation
    Inventors: Andrew T. Kim, Baozhen Li, Barry P. Linder, Ernest Y. Wu
  • Publication number: 20180226338
    Abstract: A three plate MIM capacitor test structure includes a three plate MIM capacitor, a first test wire in a metal layer above/below the three plate MIM, a second test wire below/above the three plate MIM, a third test wire below/above the three plate MIM, a first via connected to the first test wire, a second via connected to a middle plate of the three plate MIM, and a third via connected to the top and bottom plates of the three plate MIM. The test structure may verify the integrity the MIM capacitor by applying a potential to the first test wire, applying ground potential to both the second test wire and the third test wire, and detecting leakage current across the first test wire and the second and third test wires or detecting leakage current across the second test wire and the third test wire.
    Type: Application
    Filed: February 7, 2017
    Publication date: August 9, 2018
    Inventors: Andrew T. Kim, Baozhen Li, Barry P. Linder, Ernest Y. Wu
  • Publication number: 20180226339
    Abstract: A three plate MIM capacitor structure includes a three plate MIM capacitor, a first wire in a metal layer above/below the three plate MIM, a second wire below/above the three plate MIM, a third wire below/above the three plate MIM, a first via connected to the first test wire, a second via connected to a middle plate of the three plate MIM, and a third via connected to the top and bottom plates of the three plate MIM. The test structure may verify the integrity the MIM capacitor by applying a potential to the first test wire, applying ground potential to both the second test wire and the third test wire, and detecting leakage current across the first wire and the second and third wires or detecting leakage current across the second wire and the third wire.
    Type: Application
    Filed: November 1, 2017
    Publication date: August 9, 2018
    Inventors: Andrew T. Kim, Baozhen Li, Barry P. Linder, Ernest Y. Wu
  • Publication number: 20180019214
    Abstract: Reinforcement structures used with a thinned wafer and methods of manufacture are provided. The method includes forming trenches or vias at least partially through a backside of a thinned wafer attached to a carrier wafer. The method further includes depositing material within the trenches or vias to form reinforcement structures on the backside of the thinned wafer. The method further includes removing excess material from a surface of the thinned wafer, which was deposited during the depositing of the material within the vias.
    Type: Application
    Filed: July 24, 2017
    Publication date: January 18, 2018
    Inventors: Ronald G. FILIPPI, Erdem KALTALIOGLU, Andrew T. KIM, Ping-Chuan WANG
  • Publication number: 20180005961
    Abstract: A semiconductor structure includes filled dual reinforcing trenches that reduce curvature of the semiconductor structure by stiffening the semiconductor structure. The filled dual reinforcing trenches reduce curvature by acting against transverse loading, axial loading, and/or torsional loading of the semiconductor structure that would otherwise result in semiconductor structure curvature. The filled dual reinforcing trenches may be located in an array throughout the semiconductor structure, in particular locations within the semiconductor structure, or at the perimeter of the semiconductor structure.
    Type: Application
    Filed: September 18, 2017
    Publication date: January 4, 2018
    Inventors: Erdem Kaltalioglu, Andrew T. Kim, Chengwen Pei, Ping-Chuan Wang
  • Patent number: 9852999
    Abstract: A semiconductor structure includes filled dual reinforcing trenches that reduce curvature of the semiconductor structure by stiffening the semiconductor structure. The filled dual reinforcing trenches reduce curvature by acting against transverse loading, axial loading, and/or torsional loading of the semiconductor structure that would otherwise result in semiconductor structure curvature. The filled dual reinforcing trenches may be located in an array throughout the semiconductor structure, in particular locations within the semiconductor structure, or at the perimeter of the semiconductor structure.
    Type: Grant
    Filed: October 2, 2015
    Date of Patent: December 26, 2017
    Assignee: International Business Machines Corporation
    Inventors: Erdem Kaltalioglu, Andrew T. Kim, Chengwen Pei, Ping-Chuan Wang
  • Patent number: 9817063
    Abstract: The present disclosure relates to semiconductor structures and, more particularly, to interconnect reliability structures and methods of manufacture. The structure includes: a plurality of resistors; and a voltmeter configured to sense a relative difference in resistance of the plurality of resistors indicative of at least one of a via-depletion and line-depletion.
    Type: Grant
    Filed: February 19, 2016
    Date of Patent: November 14, 2017
    Assignee: GLOBALFOUNDRIES INC.
    Inventors: Ping-Chuan Wang, Andrew T. Kim, Ronald G. Filippi
  • Patent number: 9761539
    Abstract: Reinforcement structures used with a thinned wafer and methods of manufacture are provided. The method includes forming trenches or vias at least partially through a backside of a thinned wafer attached to a carrier wafer. The method further includes depositing material within the trenches or vias to form reinforcement structures on the backside of the thinned wafer. The method further includes removing excess material from a surface of the thinned wafer, which was deposited during the depositing of the material within the vias.
    Type: Grant
    Filed: June 29, 2015
    Date of Patent: September 12, 2017
    Assignee: GLOBALFOUNDRIES INC.
    Inventors: Ronald G. Filippi, Erdem Kaltalioglu, Andrew T. Kim, Ping-Chuan Wang
  • Publication number: 20170242067
    Abstract: The present disclosure relates to semiconductor structures and, more particularly, to interconnect reliability structures and methods of manufacture. The structure includes: a plurality of resistors; and a voltmeter configured to sense a relative difference in resistance of the plurality of resistors indicative of at least one of a via-depletion and line-depletion.
    Type: Application
    Filed: February 19, 2016
    Publication date: August 24, 2017
    Inventors: Ping-Chuan Wang, Andrew T. Kim, Ronald G. Filippi
  • Publication number: 20170098616
    Abstract: A semiconductor structure includes filled dual reinforcing trenches that reduce curvature of the semiconductor structure by stiffening the semiconductor structure. The filled dual reinforcing trenches reduce curvature by acting against transverse loading, axial loading, and/or torsional loading of the semiconductor structure that would otherwise result in semiconductor structure curvature. The filled dual reinforcing trenches may be located in an array throughout the semiconductor structure, in particular locations within the semiconductor structure, or at the perimeter of the semiconductor structure.
    Type: Application
    Filed: October 2, 2015
    Publication date: April 6, 2017
    Inventors: Erdem Kaltalioglu, Andrew T. Kim, Chengwen Pei, Ping-Chuan Wang
  • Publication number: 20160379934
    Abstract: Reinforcement structures used with a thinned wafer and methods of manufacture are provided. The method includes forming trenches or vias at least partially through a backside of a thinned wafer attached to a carrier wafer. The method further includes depositing material within the trenches or vias to form reinforcement structures on the backside of the thinned wafer. The method further includes removing excess material from a surface of the thinned wafer, which was deposited during the depositing of the material within the vias.
    Type: Application
    Filed: June 29, 2015
    Publication date: December 29, 2016
    Inventors: Ronald G. FILIPPI, Erdem KALTALIOGLU, Andrew T. KIM, Ping-Chuan WANG
  • Patent number: 9478509
    Abstract: The present invention relates generally to flip chip technology and more particularly, to a method and structure for fabricating a mechanically anchored controlled collapse chip connection (C4) pad on a semiconductor structure. In an embodiment, a method is disclosed that may include forming a bonding pad having one or more anchor regions that extend into a semiconductor structure and may inhibit the bonding pad from physically separating from the TSV during temperature fluctuations.
    Type: Grant
    Filed: March 6, 2014
    Date of Patent: October 25, 2016
    Assignee: GlobalFoundries, Inc.
    Inventors: Ronald G. Filippi, Erdem Kaltalioglu, Andrew T. Kim, Ping-Chuan Wang, Lijuan Zhang
  • Patent number: 9435852
    Abstract: Aspects of the present disclosure provide an integrated circuit (IC) test structure. An IC structure according to the present disclosure can include: a monitor chain having a first end electrically connected to a second end through a plurality of metal wires each positioned within one of a first metal level and a second metal level, wherein the first metal level is vertically separated from the second metal level; a first test wire positioned within the first metal level and extending in a first direction, wherein the first test wire is electrically insulated from the monitor chain; and a second test wire positioned within the second metal level and extending in a second direction, wherein the second test wire is electrically insulated from the monitor chain and the first test wire, and wherein the first direction is different from the second direction.
    Type: Grant
    Filed: September 23, 2015
    Date of Patent: September 6, 2016
    Assignee: GlobalFoundries, Inc.
    Inventors: Andrew T. Kim, Cathryn J. Christiansen, Ping-Chuan Wang
  • Patent number: 9431346
    Abstract: A structure including an Mx level including a first Mx metal, a second Mx metal, and a third Mx metal abutting and electrically connected in sequence with one another, the second Mx metal including graphene, and an Mx+1 level above the Mx level, the Mx+1 level including an Mx+1 metal and a via, the via electrically connects the third Mx metal to the Mx+1 metal in a vertical orientation.
    Type: Grant
    Filed: August 8, 2014
    Date of Patent: August 30, 2016
    Assignee: GlobalFoundries, Inc.
    Inventors: Junjing Bao, Griselda Bonilla, Samuel S. Choi, Ronald G. Filippi, Andrew T. Kim, Naftali E. Lustig, Andrew H. Simon
  • Patent number: 9318413
    Abstract: The present disclosure generally provides for an integrated circuit (IC) structure with a TSV, and methods of manufacturing the IC structure and the TSV. An IC structure according to embodiments of the present invention may include a through-semiconductor via (TSV) embedded within a substrate, the TSV having an axial end; and a metal cap contacting the axial end of the TSV, wherein the metal cap has a greater electrical resistivity than the TSV.
    Type: Grant
    Filed: October 29, 2013
    Date of Patent: April 19, 2016
    Assignee: GLOBALFOUNDRIES Inc.
    Inventors: Fen Chen, Andrew T. Kim, Minhua Lu, Timothy D. Sullivan, Ping-Chuan Wang, Lijuan Zhang